SB-36610UX SYNCHRO / RESOLVER USB TEST SYSTEM HARDWARE/SOFTWARE MANUAL

MN-36610UX-001

The information provided in this Manual is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise connection therewith.

Specifications are subject to change without notice. Please visit our Web site at <u>http://www.ddc-web.com/</u> for the latest information.

All rights reserved. No part of this Manual may be reproduced or transmitted in any form or by any mean, electronic, mechanical photocopying recording, or otherwise, without the prior written permission of Data Device Corporation.

105 Wilbur Place Bohemia, New York 11716-2426 Tel: (631) 567-5600, Fax: (631) 567-7358 World Wide Web - <u>http://www.ddc-web.com</u>

For Technical Support - 1-800-DDC-5757 ext. 7771 United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264 France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425 Germany Tel: +49-(0)89-15 00 12-11, Fax: +49-(0)89-15 00 12-22 Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689 Asia - Tel: +65 6489 4801

© 2010 Data Device Corp.

Revision	Date	Pages	Description
Rev A	Dec. 2010	All	Initial release
Rev B	March 2011	Various	Added separate driver installation instructions for Windows Vista and 7. Added optional mounting installation instructions. Updated product picture. Clarified BIT output and accuracy specification. Added accessories to accessory list.
Rev C	October 2015	Various	Added Section 5.5 and 5.6, added 2-speed and mating connector information
Rev D	July 2016	78	Updated wiring instructions
Rev E	April 2019	79	Added frequency range for reference oscillator output

1 P	REFA	\CE	1
1.1	Text	Usage	1
1.2	Stand	dard Definitions	1
1.3	Trade	emarks	1
1.4	What	is included in this manual?	1
1.5	Supp	orting Documentation	1
1.6	Tech	nical Support	2
2 0		(IE)A(2
			3
2.1	Sveto	m Poquiromonts	
2.2	Appli		4 6
2.3	Spool	ifications	0
2.4	Spec	IIICAUOIS	0
3 H	IARD\	WARE INSTALLATION	9
3.1	Hard	ware Configuration	9
3.2	Conn	ector and LED Locations	9
3.3	Modu	Ile Installation/Removal	.10
3.4	Moun	ting Instructions (Optional)	.10
3.5	Syncl	hro / Resolver Input Signal Connections	.11
3.6	Wind	ows [®] XP Driver Installation	.12
3.7	Wind	ows [®] Vista Driver Installation	.15
3.8	Wind	ows [®] 7 Driver Installation	.19
4 D			23
4 1			23
4.1	Mech	anical Outline	23
4.2 1 3	Syncl	hro / Resolver to Digital Channels	24
۰.5 4	3.1	Synchro / Resolver Interface	24
4	3.2	Synchro / Resolver Input Signal Voltages	24
4	3.3	Bandwidth	24
4	3.4	Synthesized Reference	26
4	.3.5	Incremental Encoder Emulation (A Quad B)	.26
4	3.6		27
4	3.7	Built-in-Test (BIT) Output	28
4	.3.8	Two Speed	.28
4	.3.9	Self Test	.29
4.4	On-b	oard Reference Sine Oscillator	.29
4.5	Devic	e Pinouts	.29
4	.5.1	I/O connector overview	.29
4	.5.2	Inserting Wires into Mating Connector	.29
4	.5.3	Physical Pinout Orientation for I/O Connectors	.30
4	.5.4	Signal Naming Convention for I/O Connector	31
4.6	LED	Indicators	.32

4.7	Transient Protection	33
5 S(OFTWARE INSTALLATION	35
5.1	Windows Software Overview	35
5.1	1.1 Windows GUI	35
5.1	1.2 Synchro / Resolver Test System API Library	35
5.1	1.3 Windows Console Application	35
5.2	Windows Software Installation	36
5.3	Test System Application	36
5.3	3.1 Initialization	37
5.3	3.2 Reference Oscillator Setup	38
5.3	3.3 Synchro / Resolver to Digital Channels Setup	39
5.4	Reading Angles	41
5.5	Two Speed Angles	41
5.6	Self-test Feature	42
5.7	Data Logging Feature	42
6 LI	BRARY FUNCTION CALLS	44
Get_l	DLL_Version	44
Build	DeviceList	45
GetN	umDevices	46
GetS	erialNumber	47
GetD	escription	48
Initial	ise	49
Write	SRDSignal	50
Write	SRDGain	51
Write	SRDResolution	52
Write	SRDBandwidth	53
Write	RFOControl	54
Write	RFOFrequency	55
Write	RFOAmplitude	56
Read	SRDRegisters	57
Read	RFORegisters	58
GetS	RDStatus	59
GetS	RDAngle	60
GetS	RDVelocity	61
GetS	RDRawVelocity	62
GetS	RDConfiguration	63
GetS	RDSignal	64
GetS	RDGain	65
GetS	RDResolution	66
GetS	RDBandwidth	67
GetS	RDCardBW	68
Angle	ЭТо	69

GetF	RFOStatus	70
GetF	RFOControl	71
GetF	RFOAmplitude	72
GetF	RFOFrequency	73
7 A		74
7.1	Input Signal Voltage Ranges	74
7.2	Reference Oscillator Status	75
7.3	Error codes	76
7.4	Quick Reference Wiring Guide	77
8 C	ORDERING INFORMATION	79

Figure 1.	SB-36610UX Synchro / Resolver USB Device	.4
Figure 2.	SB-36610UX Block Diagram	.5
Figure 3.	Connector and LED Locations	.9
Figure 4.	Mounting Diagram	11
Figure 5.	Windows XP - Add New Hardware Wizard Screen	12
Figure 6.	Windows XP - Search for New Driver Screen	13
Figure 7.	Windows XP - Specify Driver Location Screen	13
Figure 8.	Windows XP - Driver Installation Screen	14
Figure 9.	Windows XP - Driver Installation Complete Screen	15
Figure 10.	Windows Vista - Found New Hardware Screen	16
Figure 11.	Windows Vista - Search for New Driver Screen (1)	16
Figure 12.	Windows Vista - Search for New Driver Screen (2)	17
Figure 13.	Windows Vista - Specify Driver Location Screen	17
Figure 14.	Windows Vista - Driver Installation Screen	18
Figure 15.	Windows Vista - Driver Installation Complete Screen	18
Figure 16.	Windows 7 - Windows Device Manager	19
Figure 17.	Windows 7 - Search for New Driver Screen	20
Figure 18.	Windows 7 - Specify Driver Location Screen	20
Figure 19.	Windows 7 - Driver Installation Screen	21
Figure 20.	Windows 7 - Driver Installation Complete Screen	22
Figure 21.	SB-36610UX Mechanical Outline	23
Figure 22.	Incremental Encoder Emulation Timing	27
Figure 23.	P1/P2 Connector	30
Figure 24.	P3 Connector	30
Figure 25.	P4 Connector	30
Figure 26.	Voltage Transient Suppressor, 90V Synchro Input	34
Figure 27.	Voltage Transient Suppressor, 90V Resolver Input	34
Figure 28.	SR Test System GUI	37
Figure 29.	GUI – Selecting a Device	38
Figure 30.	GUI – Reference Oscillator Configuration	39
Figure 31.	GUI – Channel Configuration	40
Figure 32.	GUI - Angle Information	41
Figure 33.	GUI – Two Speed Information	42
Figure 34.	GUI- Self-test Feature	42
Figure 35.	GUI - Data Logging Feature	43
Figure 36.	Quick Reference Wiring Guide (Front)	77
Figure 37.	Quick Reference Wiring Guide (Back)	78

Table 1.	SB-36610UX Specification Table	6
Table 2.	Signal Connections	
Table 3.	Input Voltage Ranges	
Table 4.	Dynamic Characteristics - Low Bandwidth Card (SB-36611UX)	
Table 5.	Dynamic Characteristics - High Bandwidth Card (SB-36612UX)	
Table 6.	Analog Velocity Characteristics	
Table 7.	Digital Velocity Characteristics	
Table 8.	BIT Fault Conditions	
Table 9.	Reference Oscillator Options	
Table 10.	DDC Supplied Mating Connectors	
Table 11.	P1/P2 Connector Pinouts	
Table 12.	P3 Connector Pinouts	
Table 13.	P4 Connector Pinouts	
Table 14.	LED Status Summary	
Table 15.	Input Signal Voltage Ranges	74
Table 16.	Reference Oscillator Status Summary	75
Table 17.	Error Codes Summary	76

1 PREFACE

This manual uses typographical conventions to assist the reader in understanding the content. This section will define the text formatting used in the rest of the manual

1.1 Text Usage

- **BOLD**–indicates important information and table, figure, and chapter references.
- **BOLD ITALIC**-designates DDC Part Numbers.
- Courier New-indicates code examples.
- <...> indicates user-entered text or commands.

1.2 Standard Definitions

USB Universal Serial Bus

1.3 Trademarks

All trademarks are the property of their respective owners.

1.4 What is included in this manual?

This manual contains a complete description of hardware/software installation and use.

1.5 Supporting Documentation

- RD/RDC Series Converters Applications Manual (MN-19220XX-001)
- Synchro/Resolver Conversion Handbook
- Two-Speed Application Note (AN/MFT-10)
- RD-19230 Series Data Sheet

1.6 Technical Support

In the event that problems arise beyond the scope of this manual, you can contact DDC by the following:

US Toll Free Technical Support: 1-800-DDC-5757, ext. 7771

Outside of the US Technical Support: 1-631-567-5600, ext. 7771

Fax:

1-631-567-5758 to the attention of Motion Feedback Techonologies Applications

DDC Website: www.ddc-web.com/ContactUs/TechSupport.aspx

Please note that the latest revisions of Software and Documentation are available for download at DDC's Web Site, <u>www.ddc-web.com</u>.

2 OVERVIEW

The *SB-36610UX* is a USB interface device which contains two channels of fully independent Synchro/Resolver-to-Digital conversion. For each channel the conversion process is implemented using a DDC *RD-19230* 16-bit monolithic converter. This form factor is designed for use on any system containing a USB port such as desktops, laptops and netbooks.

2.1 Features

- USB interface
- Two independent input channels
 - Input amplitudes: 0.34 Vrms to 90 Vrms
 - 47 Hz to 10 kHz operating carrier frequency
 - 1 Arc minute accuracy
 - 10, 12, 14, 16 bit resolution
 - 15/45 Hz or 80/300 Hz bandwidth options
 - Software programmable resolution and bandwidth
 - A Quad B incremental encoder outputs (A, B, ZI)
 - Analog and Digital velocity outputs
 - Synthesized reference
 - Built-in-test (BIT) output
- On-board programmable reference oscillator
 - Output voltage: 2 32 Vrms and 20 123 Vrms options
 - 400 Hz to 10 kHz operating frequency
 - 2 VA output drive
 - Software programmable voltage and frequency
- Built-In self test
- Lead-free
- Included Software
 - Complete Synchro C SDK
 - Plug-n-Play Windows[®] XP/Vista/7 /8(32/64-bit) drivers
 - Abstracts all low-level hardware memory/registers
 - Windows Graphical User Interface (GUI)
 - User-friendly application that demonstrates full capabilities of the device

2.2 System Requirements

- USB 1.1 / 2.0 (Full-Speed) Port
- Windows[®] XP/Vista/7/8

Figure 1. SB-36610UX Synchro / Resolver USB Device

Figure 2. SB-36610UX Block Diagram

2.3 Applications

The **SB-36610UX** is designed for test applications involving angle position measurements from synchro and resolver sensors. Synchros and resolvers are used in applications such as motor control, industrial automation, robotics, antenna positioning, and valve control. This device is ideal for test engineers and developers to perform lab testing on these types of applications. The portable form factor is ideal for field use and the USB interface makes it suitable for use with desktop, laptop, or tablet computers.

2.4 Specifications

Table 1. SB-36610UX Specification Table				
PARAMETER	MIN	ТҮР	MAX	UNITS
RESOLUTION (Note 2)		10, 12, 14, 16		bits
ACCURACY (Note 3)				
Carrier frequency < 5 kHz	2.3 +/- 1 lsb		1 +/- 1 Isb	arc minutes
Carrier frequency >= 5 kHz	4 +/- 1 lsb		3 +/- 1 lsb	arc minutes
SIGNAL INPUT				
Synchro (Note 3)	2	11.8, 90	90	Vrms
Z _{in} line-to-line (2 - 11.8V)		52k		Ω
Z _{in} each line-to-ground (2 - 11.8V)		35k		Ω
Common-mode Range			9.3	Vpeak
7 1 1 1 1 1 1 1 2 2 2 2 2		105		
Z_{in} line-to-line (11.8 - 90V)		195k		Ω
Z _{in} each line-to-ground (11.8 - 90V)		130k	74	Ω
Common-mode Range			/1	Vpeak
Resolver (Note 3)	2	11.8, 90	90	Vrms
Z _{in} line-to-line (2 - 11.8V)		140k		Ω
Zin each line-to-ground (2 - 11.8V)		70k		Ω
Common-mode Range			9.3	V
				_
Z _{in} line-to-line (11.8 - 90V)		520k		Ω
Z _{in} each line-to-ground (11.8 - 90V)		260k		Ω
Common-mode Range			130	V
Sin/Cos (Note 3)	0.34	2	2	Vrms
Z _{in} single ended		10k		Ω
Common-mode Range			n/a	V
REFERENCE INPUT				
Carrier Frequency				
Low bandwidth option (SB-36611UX)	47		10k	Hz
High bandwidth option (SB-36612UX)	360		10k	Hz
Туре		Differential		
REFERENCE INPUT (Con't)				

Table 1. SB-36610UX Specification Table				
PARAMETER	MIN	ТҮР	MAX	UNITS
Voltage	2		115	Vrms
Z _{in} single ended		100k		Ω
Z _{in} differential		200k		Ω
Common-mode Range			Note 4	V
REFERENCE OSCILLATOR				
Option (26 Vrms)				
Voltage	2		32	Vrms
Carrier Frequency	400		10k	Hz
Resolution		1		Hz
Accuracy		0.1		Hz
Output Drive (At 26 Vrms) (Note 5)	1		2	VA
Option (115 Vrms)				
Voltage	20		123	Vrms
	400		10k	Hz
Resolution	100	1	TOR	Hz
Accuracy		0.1		Hz
Output Drive (At 115 Vrms) (Note 5)	1	0.1	2	VA
A. B. Zero Index Pulse (ZIP)	50 pF+			
, _,	Logic 0: TTL lo	ad. 1.6 mA at ().4 V	
	Logic 1: 10 TTI	_ loads. = 0.4 r	nA at 2.8 V min	
	Logic 0: 100 m	V max. driving	CMOS	
	Logic 1: +5 V s	upply minus 10	00mV min. drivi	ng CMOS
POWER SUPPLY				
Voltages/Tolerances				
+12 V	10	12	15	Vdc
Current with oscillator unloaded		150		mA
Current with oscillator loaded		550		mA
THERMAL				
Device Operating Temperature	0		+71	°C
Storage Temperature	-45		+85	°C
	USB ²	 1 1/2 0 (Full-Sr	peed)	
			,	
Dimensions	6	38 x 5 10 x 2 1	7	in
	0.	62 x 130 x 55 1	, 	(mm)
		02 A 130 A 33.1	I	(11111)
Weight		25		oz.
		0.7		(kg)

Table 1. SB-36610UX Specification Table				
PARAMETER MIN TYP MAX UNITS				

Notes:

_

1. These specifications apply over the rated power supply, temperature, and reference frequency ranges;15% input signal amplitude variation, 10% reference input amplitude and 10% harmonic distortion. Refer to the RD-19230 data sheet (available at <u>www.ddc-web.com</u>) for specific converter specifications.

2. Resolution is software programmable for 10, 12, 14, or 16 bits.

3. Typical signal input voltage values must be used to achieve the highest accuracy. See Table 15.

4. The peak of the common mode voltage should be less than 50% of the peak of the reference input. Note that a common mode voltage may result in a degradation of accuracy and/or may cause the converter to lose track.

5. Output power of the reference oscillator derates to 1 VA maximum at the minimum voltage output.

3 HARDWARE INSTALLATION

3.1 Hardware Configuration

The **SB-36610UX** is a USB device, and as such does not require jumpers or switches to set the Base address or interrupt values, providing a true Plug-and-Play interface.

3.2 Connector and LED Locations

Connectors and LEDs are located on the front and rear panels of the device. Refer to Figure 3 below for specific connector and LED locations.

- 1. P1 connector for input channel 1.
- 2. P2 connector for input channel 2.
- P3 connector for A Quad B and Velocity outputs for input channels 1 and 2.
- 4. P4 connector for on-board reference oscillator output.
- 5. Power indicator LED.
- 6. Status LED for on-board reference oscillator.
- 7. USB connector. Compatible with USB 1.1/2.0 interface.
- 8. Connector for 12V DC power input.

3.3 Module Installation/Removal

Connect the supplied AC adapter from the device to an available outlet.

Then connect the USB cable's Type B connector to the USB port of the **SB-36610UX**, located on the rear panel of the device. After this connection is made, connect the other end (Type A) of the USB cable to a USB port in your computer.

To remove the **SB-36610UX** device, unplug the USB cable and AC adapter from the device.

3.4 Mounting Instructions (Optional)

The **SB-36610UX** device has the optional capability of mounting on a shelf or rack. The device comes with four M3 countersunk screws that are screwed into the bottom of the case. Refer to Figure 21 for the pattern dimensions of the mounting holes on the case.

To mount the device, replace each countersunk screw with a screw long enough to accommodate the thickness of the shelf or rack that it's being mounted on. See Figure 4 for calculations on the proper thread length of the screw. The rubber feet can be removed which would eliminate the 3.2 mm dimension from the equations.

Note: The removal of all four screws releases the PCB's inside of the unit. We recommend that sufficient care be taken to ensure that the PCB's do not move in this process. Also, the spacer used is made of nylon and over tightening will strip the thread.

Figure 4. Mounting Diagram

3.5 Synchro / Resolver Input Signal Connections

Each input channel can accept Synchro, Differential Resolver, or Single-Ended Resolver signals. See Table 2 below for the different signal connections. Refer to Table 11 for the input channel's connector pinout.

Warning: Use caution when connecting signal inputs.

The inputs do not have overvoltage protection.

Ensure that the appropriate signal pinouts are used for the required input voltage.

Table 2. Signal Connections				
Mode	Configuration			
	S1	S2	S3	S4
Synchro	Х	Z	Y	No Connection
Resolver	-SIN	+COS	+SIN	-COS
Single-Ended Resolver	No Connection	COS	SIN	No Connection

3.6 Windows[®] XP Driver Installation

After successfully installing the hardware as described in the previous section, the driver must be installed. Before proceeding with the driver installation process, you must install the Windows software package described in section 5.2 if you have not done so already.

The following installation instructions apply to a Windows[®] XP operating system.

- 1. Turn on the computer.
- 2. The "Add New Hardware Wizard" window will appear after boot-up:

Hardware Update Wizard	
	Welcome to the Hardware Update Wizard
	Windows will search for current and updated software by looking on your computer, on the hardware installation CD, or on the Windows Update Web site (with your permission). <u>Read our privacy policy</u>
	Can Windows connect to Windows Update to search for software?
	 Yes, this time only Yes, now and every time I connect a device No, not this time
	Click Next to continue.
	< Back Next > Cancel

3. Choose the option "No, not this time" and click on the Next button.

Found New Hardware Wiza	Found New Hardware Wizard		
	This wizard helps you install software for: USB Device If your hardware came with an installation CD or floppy disk, insert it now. What do you want the wizard to do? Install the software automatically (Recommended) Install from a list or specific location (Advanced) Click Next to continue.		
	< Back Next > Cancel		

Figure 6. Windows XP - Search for New Driver Screen

4. Click on **Install from a list or specific location (Advanced)**, and click on the **Next** button.

Found New Hardware Wizard
Please choose your search and installation options.
 Search for the best driver in these locations.
Use the check boxes below to limit or expand the default search, which includes local paths and removable media. The best driver found will be installed.
Search removable media (floppy, CD-ROM)
Include this location in the search:
C:\Program Files\Data Device Corporation\Synchro - 😽 🛛 Browse
O Don't search. I will choose the driver to install.
Choose this option to select the device driver from a list. Windows does not guarantee that the driver you choose will be the best match for your hardware.
< Back Next > Cancel

Figure 7. Windows XP - Specify Driver Location Screen

- 5. Select Include this location in the search, and click Browse.
- Go to the location of where you installed the software package and choose the Driver directory (i.e. C:\Program Files\Data Device Corporation\Synchro -Resolver Test System\Driver).
- 7. Click on the Next button to locate and install the SB-36610UX device driver.

Figure 8. Windows XP - Driver Installation Screen

Figure 9. Windows XP - Driver Installation Complete Screen

8. Click on the **Finish** button to complete the driver installation.

3.7 Windows[®] Vista Driver Installation

After successfully installing the hardware as described in the previous section, the driver must be installed. Before proceeding with the driver installation process, you must install the Windows software package described in section 5.2 if you have not done so already.

The following installation instructions apply to a Windows[®] Vista operating system.

- 1. Turn on the computer.
- 2. The "Found New Hardware" window will appear after boot-up:

3. Click on the option Locate and install driver software.

4. Click on "I don't have the disc. Show me other options."

•	Check for a solution	
	Windows will check to see if there are steps you can take to get your device working.	
•	Browse my computer for driver software (advanced)	
	Locate and install driver software manually.	

5. Click Browse my computer for driver software (advanced).

Figure 13. Windows Vista - Specify Driver Location Screen

6. Browse to the location of where you installed the software package and choose the **Driver** directory (i.e. **C:\Program Files\Data Device Corporation\Synchro -Resolver Test System\Driver**). 7. Click on the Next button to locate and install the SB-36610UX device driver.

Figure 14. Windows Vista - Driver Installation Screen

Figure 15. Windows Vista - Driver Installation Complete Screen

8. Click on the **Close** button to complete the driver installation.

3.8 Windows[®] 7 Driver Installation

After successfully installing the hardware as described in the previous section, the driver must be installed. Before proceeding with the driver installation process, you must install the Windows software package described in section 5.2 if you have not done so already.

The following installation instructions apply to a Windows[®] 7 operating system.

- 1. Turn on the computer.
- 2. You may need to manually go into the **Windows Device Manager** to install the driver.

Figure 16. Windows 7 - Windows Device Manager

3. Search for the **SB-3661XUX** under **Other devices**, right-click on it and click on **Properties**.

Figure 17. Windows 7 - Search for New Driver Screen

4. Click on the option Browse my computer for driver software.

- Browse to the location of where you installed the software package and choose the Driver directory (i.e. C:\Program Files\Data Device Corporation\Synchro -Resolver Test System\Driver).
- 6. Click on the **Next** button to locate and install the **SB-36610UX** device driver.

Figure 19. Windows 7 - Driver Installation Screen

7. Click on the **Close** button to complete the driver installation.

4 DETAILED ARCHITECTURE

4.1 **Power Supply**

The **SB-36610UX** device is supplied with a Universal AC power adapter which will supply 12 VDC to the unit. This power adapter comes with interchangeable AC input clips to accommodate use in the following different regions:

- US
- Europe
- UK
- Australia

4.2 Mechanical Outline

4.3 Synchro / Resolver to Digital Channels

4.3.1 Synchro / Resolver Interface

Each input channel can be configured through software to accept either Synchro or Resolver signals. See the **WriteSRDSignal()** function for more details.

4.3.2 Synchro / Resolver Input Signal Voltages

The **SB-36610UX** device has three different independent sets of signal inputs available for each channel on connectors P1 and P2. The sets are labeled based on their nominal input value. Refer to Table 11 for input channel's connector pinout.

Each set is capable of accepting a wide input signal voltage range. A user programmable software setting is provided for each set depending on what input voltage is required. These settings are configured to accept the nominal input voltages by default. Refer to the **WriteSRDGain()** function for more details.

Warning: Use caution when connecting signal inputs.

The inputs do not have overvoltage protection.

Ensure that the appropriate signal pinouts are used for the required input voltage.

Refer to Table 3 below to determine which set of inputs are to be used depending on the required interface and voltage.

Table 3. Input Voltage Ranges					
P1/P2 Connector pin #'s	Interface	Nominal Input (Note 1)	Voltage Range		
3-6	Synchro/Resolver	90 Vrms	15.25 – 90 Vrms		
7-10	Synchro/Resolver	11.8 Vrms	2 – 11.8 Vrms		
11-12	Single-ended Resolver	2 Vrms	0.34 – 2 Vrms		

Table Notes:

1. Use nominal input voltage (+/- 15%) to achieve the highest accuracy.

2. See Table 15 for accuracies per voltage range.

4.3.3 Bandwidth

The user can program the device through software for each input channel independently for Low bandwidth (15/45 Hz) or High bandwidth (80/300 Hz)

depending on order selection (See Section 8). Refer to Table 4 and Table 5 for dynamic characteristics.

Use caution when operating in 10-bit and 12-bit modes. Large input steps can induce a high acceleration into the R/D converter that may cause the maximum velocity to be exceeded. If this occurs, the converter can enter a spin-around condition where it may never settle to an angle because of the low bandwidths at these resolutions.

Table 4. Dynamic Characteristics – Low Bandwidth Card (SB-36611UX)					
Parameter	Unit		High Ran	ge (45 Hz)	
Resolution	Bits	10 (Note 1)	12 (Note 1)	14 (Note 2)	16 (Note 2)
Tracking Rate	rps. min. (typ.)	160	40	10	2.5
BW (Closed Loop)	Hz nom.	45	45	45	45
Ка	1/sec ²	10.13k	10.13k	10.13k	10.13k
A1	1/sec	0.25	0.25	0.25	0.25
A2	1/sec	41.03k	41.03k	41.03k	41.03k
Α	1/sec	100	100	100	100
В	1/sec	50	50	50	50
Acceleration (1 LSB lag)	deg/sec	3.57k	891.4	222.9	55.7
Settling Time (179 deg. Step)	ms (typ.)	73	92	149	308
Parameter	Unit		Low Rang	ge (15 Hz)	
Resolution	Bits	10 (Note 1)	12 (Note 1)	14	16
Tracking Rate	rps. min. (typ.)	32	8	2	.5
BW (Closed Loop)	Hz nom.	15	15	15	15
Ka	1/sec ²	1.11k	1.11k	1.11k	1.11k
A1	1/sec	.14	.14	.14	.14
A2	1/sec	8.16k	8.16k	8.16k	8.16k
Α	1/sec	33.3	33.3	33.3	33.3
В	1/sec	16.7	16.7	16.7	16.7
Acceleration (1 LSB lag)	deg/sec	390.83	97.71	24.43	6.11
Settling Time (179 deg. Step)	ms (typ.)	226	302	549	1325

Table Notes:

1. Operating at low bandwidths in low resolutions may cause the part to never settle, inducing a spin around condition. This is typically caused when inputting a large step that exceeds the maximum velocity.

2. High bandwidths in high resolutions is recommended to be used with carrier frequencies 225 Hz and above to prevent jitter.

Table 5. Dynamic Characteristics – High Bandwidth Card (SB-36612UX)					
Parameter	Unit		High Rang	je (300 Hz)	
Resolution	Bits	10 (Note 1)	12 (Note 1)	14 (Note 2)	16 (Note 2)
Tracking Rate	rps. min. (typ.)	1152	288	72	18
BW (Closed Loop)	Hz nom.	300	300	300	300
Ка	1/sec ²	506k	506k	506k	506k
A1	1/sec	1.7	1.7	1.7	1.7
A2	1/sec	296k	296k	296k	296k
Α	1/sec	711.7	711.7	711.7	711.7
В	1/sec	355.8	355.8	355.8	355.8
Acceleration (1 LSB lag)	deg/sec	178.3k	44.6k	11.1k	2.8k
Settling Time (179 deg. Step)	ms (typ.)	10.2	12.9	20.9	43.0
Parameter	Unit		Low Rang	ge (80 Hz)	
Resolution	Bits	10 (Note 1)	12 (Note 1)	14	16
Tracking Rate	rps. min. (typ.)	320	80	20	5
BW (Closed Loop)	Hz nom.	80	80	80	80
Ка	1/sec ²	31.6k	31.6k	31.6k	31.6k
A1	1/sec	.44	.44	.44	.44
A2	1/sec	81.6k	81.6k	81.6k	81.6k
Α	1/sec	177.7	177.7	177.7	177.7
В	1/sec	88.9	88.9	88.9	88.9
Acceleration (1 LSB lag)	deg/sec	11.1k	2.8k	695	173.7
Settling Time (179 deg. Step)	ms (typ.)	40.9 51.2 81.1 161		161	

Table Notes:

1. Operating at low bandwidths in low resolutions may cause the part to never settle, inducing a spin around condition. This is typically caused when inputting a large step that exceeds the maximum velocity.

2. High bandwidths in high resolutions is recommended to be used with carrier frequencies 1.5 kHz and above to prevent jitter.

4.3.4 Synthesized Reference

The synthesized reference eliminates errors due to phase shift within the synchro/resolver sensor of up to 45° between the reference and the signal inputs. This feature is built into both input channels of this device.

4.3.5 Incremental Encoder Emulation (A Quad B)

The device can also be used for incremental encoder emulation. The following outputs are readily available on the P3 connector: A, B, and ZIP (Zero Index Pulse). These outputs are active at all times. The timing of the A, B output is dependent on the rate of change of the synchro/resolver position (rps or degrees per second) and the encoder resolution latched into the converter (refer to Figure 22). The calculations for the timing are:

n = resolution of parallel data

$$t = 1 / (2^n * Velocity(RPS))$$

T = 1 / (Velocity(RPS))

Figure 22. Incremental Encoder Emulation Timing

4.3.6 Velocity Output

Each input channel has both an analog and digital velocity output. The analog velocity output is accessible through connector P3. The voltage range is +/- 4V. The polarity indicates the direction of rotation where a positive voltage is for increasing angle. See Table 6 below for analog velocity characteristics.

Table 6. Analog Velocity Characteristics						
Parameter	Units	Typical Max				
Voltage Scaling	rps/V	The rps/V scaling is dependent on resolution. See Table 4 and Table 5 for typical tracking rates.				
Scale Factor Error	%	10	20			
Scale Factor TC	ppm/°C	100	200			
Reversal Error	%	1	2			
Linearity	%	0.5	1			
Zero Offset	mV	5	15			
Zero Offset TC	μV/°C	15	30			
Load	kΩ	10 (min.)				

Table 7. Digital Velocity Characteristics					
Parameter	Unit	Value			
Resolution	Bits	10	12	14	16
Velocity Resolution					
SB-36611UX (15 Hz)	deg/sec	0.36	0.09	0.02	0.01
SB-36611UX (45 Hz)	deg/sec	1.82	0.45	0.11	0.03
SB-36612UX (80 Hz)	deg/sec	4.24	0.91	0.23	0.06
SB-36612UX (300 Hz)	deg/sec	12.72	3.18	0.80	0.20
Accuracy	lsb	+/-	6	+/	- 4
Tracking Rate	rps. min. (typ.)	Refer to Table 4 and Table 5 for typical tracking rates.			

The digital velocity output is accessible through software. See Table 7 below for digital velocity characteristics.

4.3.7 Built-in-Test (BIT) Output

The Built-In-Test (BIT) will flag Loss-of-Signal (LOS), Loss-of-Reference (LOR), Loss-of-Tracking (LOT), and 180° phase error fault conditions. The BIT output is active low and a logical OR of these four conditions. Any one or combination of these conditions will assert the BIT output. These fault conditions are described in Table 8 below.

Table 8. BIT Fault Conditions				
Fault Condition	Descritption			
LOS	Both SIN and COS inputs (S1-S3, S2-S4) must fall below 0.5 Vrms.			
LOR	The reference input (RH-RL) must fall below 0.5 Vrms.			
LOT	This condition occurs when the difference between the analog input and digital output exceeds 100 lsbs in the positive direction or 250 lsbs in the negative direction. This typically occurs when exceeding the maximum tracking rate or during power up.			
180° Phase Error	180° phase error input signal to reference input (false null) causes a BIT plus kickstarts the converter counter to correct the error.			

4.3.8 Two Speed

Two speed function allows resolutions greater than 16 bits to be achieved. Refer to the Two-Speed Application Note (*AN/MFT-10*), the RD/RDC Applications Manual (*MN-19220XX-001*) and the Synchro/Resolver Conversion Handbook. These documents are available at <u>www.ddc-web.com</u>.

4.3.9 Self Test

The device has a built-in self test capability which can run a simulated test angle of 0, 45, or 90 degrees on each channel. Any channel not reporting back an answer within \pm 1° will fail. Refer to Section 5.6, on how to setup.

4.4 On-board Reference Sine Oscillator

The on-board oscillator may be used to take the place of an external drive oscillator for the excitation signal. This oscillator is available in two options, see Table 9 for details. The oscillator frequency and voltage are programmable through software. The voltage can be programmed up to the max voltage selection ordered.

Table 9. Reference Oscillator Options					
Device	Minimum	Maximum			
26 Volt unit	2 Vrms	32 Vrms			
115 Volt unit	20 Vrms	123 Vrms			

4.5 Device Pinouts

This section delineates the user's pinouts for the **SB-36610UX**. The connectors described here are the four connectors on the front panel.

4.5.1 I/O connector overview

The supplied mating connectors are listed in Table 10 below. For additional mating connectors, go to <u>www.weidmuller.com</u>.

Table 10. DDC Supplied Mating Connectors					
Description	Part Number (Weidmuller)	Qty			
P1/P2 Mating Connector	1727680000	2			
P3 Mating Connector	1727660000	1			
P4 Mating Connector	1727670000	1			

4.5.2 Inserting Wires into Mating Connector

Refer to Figure 36 in the Appendix for illustrative instructions on how to insert wires into the mating connectors.

Warning: Use caution when connecting signal inputs.

The inputs do not have overvoltage protection.
Ensure that the appropriate signal pinouts are used for the required input voltage.

4.5.3 Physical Pinout Orientation for I/O Connectors

The 14-Pin P1/P2 connector receptacle shown in Figure 23 below contains the Synchro/Resolver signal inputs for Channels 1 and 2.

Figure 23. P1/P2 Connector

The 10-Pin P3 connector receptacle shown in Figure 24 below contains the analog Velocity and A Quad B outputs for both Channels 1 and 2.

Figure 24. P3 Connector

The 12-Pin P4 connector receptacle shown in Figure 25 contains the on-board reference oscillator's outputs.

Figure 25. P4 Connector

4.5.4 Signal Naming Convention for I/O Connector

The P1 and P2 connectors are used for the inputs to channels 1 and 2 respectively. The connector's pinout is listed in Table 11.

Table 11. P1/P2 Connector Pinouts			
Pin	Function	Description	
1	RH	Reference excitation input high	
2	RL	Reference excitation input low (respective to RH)	
3	S1 – 90V		
4	S2 – 90V	Ormahan (Daarahan ing ta faning ta han an an 45.05 - 00.) (ma	
5	S3 – 90V	Synchro/Resolver inputs for input voltage range: 15.25 – 90 vrms Refer to Table 2 for signal connections.	
6	S4 – 90V		
7	S1 – 11.8V		
8	S2 – 11.8V		
9	S3 – 11.8V	Synchro/Resolver inputs for input voltage range: 2 – 11.8 vrms Refer to Table 2 for signal connections.	
10	S4 – 11.8V		
11	SIN – 2V Single Ended	Single-ended Resolver inputs for input voltage range: 0.34 – 2	
12	COS – 2V Single Ended	Vrms Refer to Table 2 for signal connections.	
13	AGND	Analog ground	
14	AGND	Analog ground	

Table Notes:

1. All AGND pins are internally common.

The P3 connector's pinout is listed in Table 12 with a description of the signals following the table.

Table 12. P3 Connector Pinouts			
Pin	Function	Description	
1	VEL1	Velocity output (channel 1)	
2	ZIP1	Zero index pulse output for (channel 1)	
3	A1	ncremental encoder emulation output (channel 1)	
4	B1	ncremental encoder emulation output; 90° Phase-shifted from "A" (channel 1)	
5	GND	Ground	
6	GND	Ground	
7	VEL2	Velocity output (channel 2)	
8	ZIP2	Zero index pulse output for (channel 2)	

Table 12. P3 Connector Pinouts				
Pin	Function	Description		
9	A2	ncremental encoder emulation output (channel 2)		
10	B2	Incremental encoder emulation output; 90° Phase-shifted from "A" (channel 2)		

Table Notes:

1. All GND pins are internally common.

The P4 connector's pinout is listed in Table 13 with a description of the signals following the table.

Table 13. P4 Connector Pinouts				
Pin	Function	Description		
1	RH	Reference excitation output high (Note 1)		
2	RL	Reference excitation output low (respective to RH) (Note 2)		
3	RH	(Note 1)		
4	RL	(Note 2)		
5	RH	(Note 1)		
6	RL	(Note 2)		
7	RH	(Note 1)		
8	RL	(Note 2)		
9	AGND	Analog ground (Note 3)		
10	AGND	Analog ground (Note 3)		
11	O/P En	This pin must be tied to AGND in order to enable the oscillator output.		
12	AGND	Analog ground (Note 3)		

Table Notes:

1. All RH pins are internally common.

2. All RL pins are internally common.

3. All AGND pins are internally common.

4. Additional pins are provided for multiple parallel device connections.

4.6 LED Indicators

The **SB-36610UX** has two LEDs conveniently located on the front panel to provide a user with a quick visual status of the device and the on-board reference oscillator. The power LED is located on the bottom-left and the reference oscillator status LED is

Table 14. LED Status Summary				
LED	LED LED Color Blinking Rate Description		Description	
	Green	Steady	Normal operation.	
Power	Red	Steady	Hardware fault exists; Contact DDC Factory (Note 1).	
	Off	Steady	No power.	
	Orange	Steady	Standby mode. Output is disabled.	
Reference Oscillator Status	Green	2 Hz	Output is enabled.	
	Red	0.5 Hz	Fault condition exists; no output.	
	Off	Steady	No power.	

located on the top-right of the device. Refer to Figure 3 for LED locations. Table 14 below details each LED.

Table Notes:

1. During the start up sequence this LED may turn red and orange for a brief moment before turning green upon applying power to the device.

4.7 Transient Protection

Systems using the 90V line-to-line inputs may have voltage transients which exceed the maximum specification for this device's internal thin-film resistor network (500V). The 90V source may be derived from poorly regulated 115V Power Supplies, which have various high current loads. These loads may switch on and off, thus causing spikes and transients in regulation. These transients can damage the internal input thin-film resistor network. Therefore protecting these thin-film resistor networks can be done by installing voltage suppressors as shown in Figure 26 and Figure 27. Voltage transients are also likely to occur whenever the synchro or resolver input is switched on and off. For instance, a 1000V transient can be generated when the primary of a 90V control transmitter (CX) or torque transmitter (TX) driving a synchro or resolver input is opened.

CR1, CR2, CR3, and CR4 are 1.5KE170CA or 1.5KE200C-type bipolar transient voltage suppressors or equivalent.

CR4, CR5, and CR6 are 1.5KE170CA or 1.5KE200C-type bipolar transient voltage suppressors or equivalent.

Figure 27. Voltage Transient Suppressor, 90V Resolver Input

5 SOFTWARE INSTALLATION

There are software applications which are used in conjunction with the **SB-36610UX** device. A software package containing the following applications are included with your device.

For Windows:

- Graphical User Interface (GUI)
- Synchro / Resolver Test System API Library (DLL)
- Command Line Interface (CLI) console application

5.1 Windows Software Overview

The **SB-36610S0** software package is compatible with Windows[®] XP/Vista/7 32-bit and 64-bit operating systems.

5.1.1 Windows GUI

An executable GUI using the SRTestSystemLib DLL is included with the **SB-36610UX** device to demonstrate the full capabilities of the card.

5.1.2 Synchro / Resolver Test System API Library

The Synchro / Resolver Test System API Library DLL (Dynamic Link Library) has been created to provide the user with a hardware abstraction layer for the **SB**-**36610UX**. This software layer includes routines that dramatically reduce software development time by providing a high level C functions for the application programmer to interface to the USB device. Section 6 of this manual describes the routines available from the DLL.

Both 32-bit and 64-bit versions of the DLL are included with the software package:

- SRTestSystemLib_x86.dll (32-bit)
- SRTestSystemLib_x64.dll (64-bit)

5.1.3 Windows Console Application

A basic CLI console application is also included along with its source code to provide a user with example code on how to create a simple application using the API library.

5.2 Windows Software Installation

If an existing version of the software is already installed, you must first uninstall it through the **Control Panel** \rightarrow **Add or Remove Programs**.

The Windows software is available on the MFT Software CD included with the device. To ensure you have the latest version of the software, download it off our website at <u>www.ddc-web.com</u>.

Perform the following steps below to install the software package for Windows from the MFT CD:

- 1. Insert the MFT CD into the CD-ROM drive, and allow the CD to auto start.
- 2. Choose your product (i.e., SB-36610UX).
- 3. Choose the appropriate software you wish to install (i.e., SB-36610S0). There are two separate installation files, one for 32-bit and the other for 64-bit OS.
- 4. Click on the Install Software icon.
- 5. Follow the on screen instructions to complete the installation.

Perform the following steps below to install the software package for Windows from the downloadable ZIP file:

- 1. Extract the .zip file.
- 2. Run the **Setup.exe** file for the operating system version that applies to you (x86 or x64 indicating 32-bit and 64-bit respectively).
- 3. Follow the on screen instructions to complete the installation.

5.3 Test System Application

The SR Test System GUI provides a user-friendly interface to the **SB-36610UX** device. To access the GUI, click on **Start** \rightarrow **All Programs** \rightarrow **Data Device Corporation** \rightarrow **SB-3661x** \rightarrow **SRTestSystemGUI**.

SOFTWARE INSTALLATION

💀 Synchro / Resolver Test System GUI version: 1.3.0.0	
Available devices: 0: SB-36612UA-3LO, A6TMH4AI Refresh	Constant RFO status read 🔲 Constant Angle Read
Synchro / Resolver channel 1 - High bandwidth components	Synchro / Resolver channel 2 - High bandwidth components
Built-in-Test: 0x0001	Built-in-Test: 0x0001
Angle: 0x2000 045.0000°	Angle: 0x4001 090.0055°
Velocity: 0x0000 000.00°/sec 000.00 rpm	Velocity: 0x0000 000.00°/sec 000.00 rpm
Signal: 0x0006 Test 45 Degrees Change	Signal: 0x0007 Test 90 Degrees Change
Input voltage: 0x0000 Thange	Input voltage: 0x0000
Resolution: 0x0003 16 bit Change	Resolution: 0x0003
Bandwidth: 0x0000	Bandwidth: 0x0000
Dual speed	26V Reference oscillator
Calculate dual speed angle Turns ratio: 1 to 1	Amplitude: 25.7 Change 0x0101 0257
Angle:	Frequency: 400 Change 0x0190 0400
	Control: Request off Enable output
	Status: 0x0080 - Good
	Logging
	Logging interval: 10 - seconds Enable logging
	0 records saved
[©] Data Device Corporation	Read Angle(s) Clear output list box Exit
7/9/2015 10:47:43 AM Synchro / Resolver Test System GUI version 1.3.0.0 7/9/2015 10:47:43 AM Lleing S/B test system DLL version: 1.30	
7/9/2015 10:47:43 AM Building and tisplaying list of connected devices, there are 1 S/R test syster 7/9/2015 10:47:43 AM Initialising device 0	ms connected to the system
7/9/2015 10:47:58 AM WriteRFOAmplitude(0, 0) returned -10 Invalid entry	

Figure 28. SR Test System GUI

5.3.1 Initialization

Upon starting the SR Test System GUI application, all installed **SB-36610UX** devices connected to the computer at the time will automatically be detected and initialized. You can choose which device you wish to operate with through the **Available devices** drop down list. Both the model number and serial number will be displayed for each listed device. Device # 0 is selected by default.

💀 Synchro / Resolver Test System GUI version: 1.3.0.0		
Available devices: 0: SB-36612UA-3LO, A6TMH4AI 0: SB-36612UA-3LO, A6TMH4AI 1: SB-36611UD-3LO, A6TMH4UZ	Refresh	Constant RFO status read 🔲 Constant Angle Read
Synchro / Resolver channel 1 - High bandwidth components	Synchro / Resolv	er channel 2 - High bandwidth components
Built-in-Test: 0x0001	Built-in-Test	: 0x0001
Angle: 0x2000 045.0000°	Angle:	0x2000 045.0000°
Velocity: 0x0000 000.00°/sec	Velocity:	0x0000 000.00°/sec
Signal: 0x0006 Test 45 Degrees	Change Signal:	0x0006 Test 45 Degrees Change

Figure 29. GUI – Selecting a Device

If additional devices are installed and connected at a later time, you must click the **Refresh** button in order to detect and initialize the device(s) before use.

Both Synchro / Resolver to Digital channels are set to the 45° self-test mode and the reference oscillator status will automatically be refreshed at a constant 300ms rate.

5.3.2 Reference Oscillator Setup

The on-board reference oscillator must be configured prior to using it. Only the amplitude and frequency need to be set. The reference oscillator label on the GUI will display either **26V** or **115V** depending on which ordering option was selected. Configuration of the on-board oscillator is not necessary when using an external excitation reference source.

To set the amplitude (Vrms), enter the desired value in decimal format (e.g. 25.7V) into the **Amplitude** field box. The max resolution is 0.1 V.

To set the frequency (Hz), enter the desired value in the form of an integer (e.g. 401 Hz) into the **Frequency** field box. The max resolution is 1 Hz.

Once a field has been modified, the **Change** button next to it will turn red. This indicates that a change was made but not yet applied. Clicking the **Change** button will apply the new value causing the button to turn back to black.

26V Reference oscillator				
Amplitude:	25.7	Change	0x0000 0000	
Frequency:	400	Change	0x0000 0000	
Control:	Request off	Enable output		
Status:	0x0080 - Good			

Figure 30. GUI – Reference Oscillator Configuration

A user notification will appear in the output box below if either the entered amplitude and/or frequency is outside the allowable limits.

Once the reference oscillator has been configured, the **Enable output** checkbox can be used to enable/disable the oscillator output.

A **Status** field is also provided for troubleshooting and diagnostics of the on-board oscillator. This field is automatically updated every 300ms. A detailed summary of status codes can be found on Table 16.

5.3.3 Synchro / Resolver to Digital Channels Setup

Each S/R to Digital channel must be configured prior to use. There are four configurable fields for each channel:

- Signal Mode
- Input Voltage Range
- Resolution
- Bandwidth

Synchro / Resolver channel 1 - High bandwidth components				
Built-in-Test:	0x0001			
Angle:	0x2000	045.0000°		
Velocity:	0x0000	000.00°/sec	c 00	0.00 rpm
Signal:	0x0006	11.8V Resolver	*	Change
Input voltage:	0x000x0	10.03 - 13.57 Vms	~	Change
Resolution:	0x0003	16 bit	•	Change
Bandwidth:	0x0000	80 Hz		

Figure 31. GUI – Channel Configuration

With the exception of the bandwidth, all configurable fields include a **Change** button that will turn red after a change in the field was made. This indicates that a change was made but not yet applied. Clicking the **Change** button will apply the new setting causing the button to turn back to black.

5.3.3.1 Signal Mode Selection

Select the desired **Signal** mode using the drop down list.

5.3.3.2 Input Voltage Selection

When you select a new **Signal** mode, the **Input voltage** will be set to the nominal range for that mode (i.e. the voltage range is set to 10.03 – 13.57 Vrms when selecting 11.8V Resolver). Use the drop down list if a different voltage range is required.

Note: The nominal voltage range must be used in order to achieve the highest accuracy. The accuracy is de-rated when using all other voltage range selections. (See Table 15 for details)

5.3.3.3 Resolution Selection

Select the desired **Resolution** using the drop down list. The default resolution is 16 bits.

5.3.3.4 Bandwidth Selection

Select the desired **Bandwidth** using the two radio buttons for either low or high. The bandwidth values displayed for the low and high settings are determined by the device's model number. The default bandwidth is low.

Note: Bandwidth (BW) should be set for at least $\frac{1}{4}$ of the carrier frequency (F_c) for optimum dynamics. Lower BW will reduce noise issues. Higher BW will increase the maximum tracking rate but can cause jitter when exceeding the $\frac{1}{4}$ BW to F_c rule.

5.4 Reading Angles

Once the channel(s) have been properly configured, there are two ways to perform angle reads:

- 1. Doing a single read using the Read Angle(s) button. This will provide a new angle readout for both channels even if only one channel is being used.
- 2. Doing constant reads using the **Constant Angle Read** checkbox. The delay time between each read is 300ms.

Additionally, the **Velocity** and **Built-in-Test** information will be updated during angle reads.

Figure 32. GUI - Angle Information

5.5 **Two Speed Angles**

For two speed mode, the USB box must have Channel 1 connected to the Coarse Angle and Channel 2 to the Fine Angle.

Enter the **Turns Ratio** between the Coarse and Fine Channels into the GUI.

Once the Turns Ratio has been configured, the **Calculate Dual Speed Angle** checkbox can be clicked to display the two speed angles.

Dual speed				
Calculate dual speed angle		Tums ratio: 1 to	4	•
Angle:	045.0014	0		

Figure 33. GUI – Two Speed Information

5.6 Self-test Feature

The device has a self-test feature for both channels and will test the device at 0, 45, or 90 degrees. If the device does not report back angles within +-1 degree, the device will fail.

Note: The device has an internal wrap, the only connections needed to the USB device are the power supply for the USB device and USB cable to a computer.

Synchro / Resolver of	hannel 1	Synchro / Resolver of	hannel 2
Built-in-Test:	0x0000	Built-in-Test:	0x0000
Angle:	0x0000	Angle:	0x0000
Velocity:	0x000x	Velocity:	0x0000
Signal:	0x0000 Test 45 Degrees 🔽 Change	Signal:	0x0000 Change
Input voltage:	0x0000 90V Synchro Change	Input voltage:	0x0000 Change
Resolution:	0x0000 2V Resolver Change	Resolution:	0x0000 Change
Bandwidth:	0x0000 Test 0Degrees Test 45 Degrees Test 90 Degrees	Bandwidth:	0x0000 ⊚ Low ⊘ High

Figure 34. GUI- Self-test Feature

5.7 Data Logging Feature

The GUI has an option to log data that is being read.

- 1. Enable Constant Angle Read in the top right corner of GUI
- 2. Choose the logging interval time, this will record data every "X" amount of seconds and save the data in a desired location within a text file.

🖶 Synchro / Resolver Test System GUI version: 1.3.0.0			
Available devices: 0: SB-36612UA-3LO, A6TMH4AI Refresh	Constant RFO status read 🗹 Constant Angle Read		
Synchro / Resolver channel 1 - High bandwidth components	Synchro / Resolver channel 2 - High bandwidth components		
Built-in-Test: 0x0001	Built-in-Test: 0x0001		
Angle: 0x2000 045.0000°	Angle: 0x4001 090.0055°		
Velocity: 0x0000 000.00°/sec 000.00 rpm	Velocity: 0x0000 000.00°/sec 000.00 rpm		
Signal: 0x0006 Test 45 Degrees Change	Signal: 0x0007 Test 90 Degrees Change		
Input voltage: 0x0000 - Change	Input voltage: 0x0000		
Resolution: 0x0003 16bit	Resolution: 0x0003 16bt Change		
Bandwidth: 0x0000 80 Hz 300 Hz	Bandwidth: 0x0000		
Dual speed	25V Reference oscillator		
Calculate dual speed angle Turns ratio: 1 to 1	Amplitude: 25.7 Change 0x0101 0257		
Angle:	Frequency: 400 Change 0x0190 0400		
	Control: Request on I Enable output		
	Status: 0x0082 - Fault		
	Logging		
	Logging interval: 10 🚖 seconds 💟 Enable logging		
	Logging to C:\Users\chuchkov\Desktop\test.csv		
	2 records saved		
[©] Data Device Corporation	Read Angle(s) Clear output list box Exit		
7/9/2015 10:42:39 AM Synchro / Resolver Test System GUI version 1.3.0.0 7/9/2015 10:42:39 AM Lision S/B test system DLL version: 1.30			
7/9/2015 10:42:40 AM Building and displaying 1st of connected devices, there are 1 S/R test system 7/9/2015 10:42:40 AM Initializing device 0	ns connected to the system		
L			

3. C	heck "Enable	Logging" to	start the data	logging process
------	--------------	-------------	----------------	-----------------

Figure 35. GUI - Data Logging Feature

6 LIBRARY FUNCTION CALLS

The following list contains all of the pertinent function calls required by the user. For any function call that returns an errorCode integer, refer to Table 17 for a detailed summary of the error codes. Any function calls contained within the SRTestSystemLib.h file that are not listed here are available from the factory upon request.

Get_DLL_Version

DESCRIPTION

Gets the version number of the Synchro / Resolver Test System DLL.

PROTOTYPE

int Get_DLL_Version(void) ;

INPUT DATA

None.

RETURNED DATA

An integer representing the DLL's version number shifted two digits to the right. (i.e. 153 indicates version 1.53).

Code	Result/Returned Data
<pre>int version = Get_DLL_Version();</pre>	9 indicating version 0.09

BuildDeviceList

DESCRIPTION

Detect all Synchro / Resolver Test Systems connected to the computer.

PROTOTYPE

int BuildDeviceList(void) ;

INPUT DATA

None

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

Code	Result/Returned Data
<pre>int errorCode = BuildDeviceList();</pre>	Detects all Synchro / Resolver Test Systems connected to the computer, and the initialises each connected device.

GetNumDevices

DESCRIPTION

Gets the number of Synchro / Resolver Test Systems connected to the computer. This function should only be called after calling BuildDeviceList.

PROTOTYPE

int GetNumDevices(void) ;

INPUT DATA

None.

RETURNED DATA

The number of Synchro /Resolver Test Systems connected to the computer.

Code	Result/Returned Data
<pre>int numDevices = GetNumDevices();</pre>	Gets the number of Synchro / Resolver Test Systems connected to the computer.

GetSerialNumber

DESCRIPTION

Retrieves the serial number of the specified Synchro / Resolver Test System device. The serial number is an alphanumeric string of ASCII characters.

PROTOTYPE

char* GetSerialNumber(int device) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

RETURNED DATA

A pointer to an array of characters containing the serial number of the specified device. Maximum size 16 bytes.

Code	Result/Returned Data
<pre>char* SerialNum; SerialNum = GetSerialNumber(0); printf(``%s", SerialNum);</pre>	Retrieves and prints the serial number of the first Synchro / Resolver Test System device.

GetDescription

DESCRIPTION

Retrieves the model number of the specified Synchro / Resolver Test System device.

PROTOTYPE

```
char* GetDescription(int device) ;
```

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

RETURNED DATA

A pointer to an array of characters containing the model number of the specified device. Pointer to a character array. Maximum size 64 bytes.

Code	Result/Returned Data
<pre>char* ModelNumber; ModelNumber = GetDescription(0); printf("%s", ModelNumber);</pre>	Retrieves and prints the model number of the first Synchro / Resolver Test System device.

Initialise

DESCRIPTION

Sets up the communications with the specified Synchro / Resolver Test System. Should be called after connecting device to the computer and calling BuildDeviceList.

PROTOTYPE

```
int Initialise(int device) ;
```

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

Code	Result/Returned Data
<pre>int errorCode = Initialise(0);</pre>	Initializes first Synchro / Resolver Test System and checks error code.

WriteSRDSignal

DESCRIPTION

Set the mode of operation of a Synchro / Resolver to Digital channel. Input checks are performed on the channel and value parameters. After a successful write, all registers are read back and checked to make sure the Synchro / Resolver Test System has acted on the new configuration.

PROTOTYPE

int WriteSRDSignal(int device, int channel, int value) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

value = An integer between 0 and 7 indicating the desired operation of the Synchro / Resolver to Digital channel.

0 = 90V Synchro 1 = 11.8V Synchro 2 = 90V Resolver 3 = 11.8V Resolver 4 = 2V Sin/Cos $5 = 0^{\circ} \text{ Self test}$ $6 = 45^{\circ} \text{ Self test}$ $7 = 90^{\circ} \text{ Self test}$

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

Code	Result/Returned Data
<pre>int errorCode = WriteSRDSignal(0, 0, 0);</pre>	Set channel 1 of first Synchro / Resolver Test System into 90 volt synchro mode and check error code.

WriteSRDGain

DESCRIPTION

Configures the Synchro / Resolver to Digital channel to accept a specific voltage range depending on which signal mode the channel is configured for determined by the WriteSRDSignal() function.

PROTOTYPE

int WriteSRDGain(int device, int channel, int value) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

value = An integer between 0 and 6 indicating the desired voltage range of the Synchro / Resolver to Digital channel. See Table 15 for the different input voltage ranges.

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

Code	Result/Returned Data
<pre>int errorCode = WriteSRDGain(0,0,0);</pre>	Configures channel 1 of first Synchro / Resolver Test System to accept a voltage range of 10.03 – 13.57 Vrms when using the 11.8V Synchro or Resolver signal modes.

WriteSRDResolution

DESCRIPTION

Set the resolution of a Synchro / Resolver to Digital channel. Input checks are performed on the channel and value parameters. After a successful write, all registers are read back and checked to make sure the Synchro / Resolver Test System has acted on the new configuration.

PROTOTYPE

```
int WriteSRDResolution(int device, int channel, int value) ;
```

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

value = An integer between 0 and 3 indicating the desired resolution of the Synchro / Resolver to Digital channel.

0 = 10 bit 1 = 12 bit 2 = 14 bit 3 = 16 bit

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

Code	Result/Returned Data
<pre>int errorCode = WriteSRDResolution(0,0,0);</pre>	Set channel 1 of first Synchro / Resolver Test System to 10 bit resolution

WriteSRDBandwidth

DESCRIPTION

Set the bandwidth mode of a Synchro / Resolver to Digital channel. Input checks are performed on the channel and value parameters. After a successful write, all registers are read back and checked to make sure the Synchro / Resolver Test System has acted on the new configuration.

PROTOTYPE

int WriteSRDBandwidth(int device, int channel, bool value) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

value = A boolean value indicating high bandwidth setting (true) or low bandwidth setting (false).

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

Code	Result/Returned Data
<pre>int errorCode = WriteSRDBandwidth(0,0,false);</pre>	Set channel 1 of first Synchro / Resolver Test System to low bandwidth mode

WriteRFOControl

DESCRIPTION

Turns the Reference Oscillator output on or off.

<u>Note for safety reasons</u>: When the reference oscillator output is enabled, it will automatically disable itself if no communication to the device over the USB bus occurs within every 1 second.

It is suggested to use the GetRFOStatus function in a constant rate loop of less than 1 second to keep the oscillator output enabled.

PROTOTYPE

int WriteRFOControl(int device, bool power) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

power = A boolean value setting the reference oscillator output to "ON" (true) or "OFF" (false).

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

Code	Result/Returned Data
<pre>int errorCode = WriteRFOConfig(0,false);</pre>	Turn reference oscillator output off.

WriteRFOFrequency

DESCRIPTION

Sets the Reference Oscillator output frequency. Frequencies below 400 hertz and above 10,000 hertz will be rejected. The resolution is 1 Hz.

PROTOTYPE

int WriteRFOFrequency(int device, int frequency) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

frequency = An integer specifying the desired Reference Oscillator output frequency in hertz (Hz).

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

Code	Result/Returned Data
<pre>int errorCode = WriteRFOFrequency(0, 400);</pre>	Set reference oscillator frequency in first Synchro / Resolver Test System to 400 Hz.

WriteRFOAmplitude

DESCRIPTION

Set the amplitude of the reference oscillator output. The allowed amplitudes depend on the type of device being used as shown in the following table.

PROTOTYPE

int WriteRFOAmplitude(int device, int amplitude) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

amplitude = An integer representing the desired amplitude in tenths of a volt. (i.e. 20 = 2.0 V and 257 = 25.7 V). Refer to Table 9 for amplitude limits.

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

Code	Result/Returned Data
<pre>int errorCode = WriteRFOAmplitude(0, 1150)</pre>	Set reference oscillator amplitude in first Synchro / Resolver Test System to 115 volts (115 volt unit only).

ReadSRDRegisters

DESCRIPTION

Read all Synchro / Resolver to Digital registers (status, angle, velocity and configuration) and update the libraries' copy of these registers so they can be accessed with GetSRDStatus, GetSRDAngle, GetSRDVelocity, GetSRDRawVelocity, GetSRDConfiguration, GetSRDSignal, GetSRDGain, GetSRDResolution, GetSRDBandwidth and GetSRDCardBW. ReadSRDRegisters should be called before any of these functions.

PROTOTYPE

int ReadSRDRegisters(int device) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

<pre>int errorCode = ReadSRDRegisters(0); Reads updated Synchro / Resolver to Digital registers from first Synchro / Resolver Test System, checking the error code to determine if the read was</pre>	Code	Result/Returned Data
successful.	<pre>int errorCode = ReadSRDRegisters(0);</pre>	Reads updated Synchro / Resolver to Digital registers from first Synchro / Resolver Test System, checking the error code to determine if the read was successful.

ReadRFORegisters

DESCRIPTION

Read all Reference Oscillator registers (status, control, frequency and amplitude) and update the libraries' copy of these registers so they can be accessed with GetRFOStatus, GetRFOControl, GetRFOAmplitude and GetRFOFrequency. ReadRFORegisters should be called before any of these functions.

PROTOTYPE

int ReadRFORegisters(int device) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

RETURNED DATA

Integer error code. See Table 17 for a detailed summary of error codes.

Code	Result/Returned Data
<pre>int errorCode = ReadRFORegisters(0);</pre>	Reads updated Reference Oscillator registers from first Synchro / Resolver Test System, checking the error code to determine if the read was successful.

GetSRDStatus

DESCRIPTION

Get the status of a Synchro / Resolver to Digital channel's Built-in test (BIT). ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

int GetSRDStatus(int device, int channel) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

RETURNED DATA

An integer indicating the status of the R/D converter's Built-in test (BIT). 1 indicates no fault, 0 indicates a fault. Refer to Table 8 for the different fault conditions.

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0);</pre>	Reads updated Synchro / Resolver to
<pre>if (errorCode == 0) {</pre>	Digital registers from first Synchro /
int S1 = GetSRDStatus(0,0);	error code to determine if the read was
<pre>int S2 = GetSRDStatus(0,1);</pre>	successful.
printf("Chl status:0x%4x",Al);	
<pre>printf("Ch2 status:0x%4x",A2);</pre>	If the read is successful the BIT status
}	for both channels are printed.

GetSRDAngle

DESCRIPTION

Get the angle read by a Synchro / Resolver to Digital channel's R/D converter. ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

int GetSRDAngle(int device, int channel) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

RETURNED DATA

An integer in between 0x0000 and 0xFFFF.

EXAMPLE CODE

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0);</pre>	Reads updated Synchro / Resolver to
if (errorCode == 0)	Digital registers from first Synchro /
{	Resolver Test System, checking the error
<pre>int A1 = GetSRDAngle(0,0);</pre>	code to determine if the read was
<pre>int A2 = GetSRDAngle(0,1);</pre>	successful.
printf("Chl angle:0x%4x",A1);	
printf("Ch2 angle:0x%4x",A2);	If the read is successful the angle word
}	for both channels are printed.

To convert the angle reading returned to a degree's format use the function call "Angle To." See function call description for details.

GetSRDVelocity

DESCRIPTION

Get the velocity calculated by a Synchro / Resolver to Digital channel. This value is scaled according to the channel's bandwidth and resolution settings before being returned. ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

double GetSRDVelocity(int device, int channel) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

RETURNED DATA

Any double representing the calculated velocity in degrees per second.

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0);</pre>	Reads updated Synchro / Resolver to
if (errorCode == 0)	Digital registers from first Synchro /
{	Resolver Test System, checking the error
int V1 = GetSRDVelocity(0,0);	code to determine if the read was
<pre>int V2 = GetSRDVelocity(0,1);</pre>	successful.
printf("Chl velocity:%i",V1);	
printf("Ch2 velocity:%i",V2);	If the read is successful the calculated
}	velocity in deg/sec for both channels are
	printed.

GetSRDRawVelocity

DESCRIPTION

Get the velocity calculated by a Synchro / Resolver to Digital channel. This value is not scaled prior to being returned and it is recommended that unless there is specific reason to use this function, GetSRDVelocity should be used instead.

ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

int GetSRDRawVelocity(int device, int channel) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

RETURNED DATA

A signed integer representing the value of the Synchro / Resolver to Digital channel's velocity register (-32768 to 32767).

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0); if (errorCode == 0) { int V1 = GetSRDRawAngle(0,0); int V2 = GetSRDRawAngle(0,1); printf("Ch1 velocity:0x%4x",V1); printf("Ch2 velocity:0x%4x",V2); }</pre>	Reads updated Synchro / Resolver to Digital registers from first Synchro / Resolver Test System, checking the error code to determine if the read was successful. If the read is successful the raw velocity data for both channels are printed.

GetSRDConfiguration

DESCRIPTION

Get the value of a Synchro / Resolver to Digital channel's configuration register. This register contains bits for signal, gain, resolution, bandwidth and CardBW which can all be obtained individually using their own functions (GetSRDSignal, GetSRDGain, GetSRDResolution, GetSRDBandwidth, GetSRDCardBW). Unless there is a specific reason to use this function it is recommended to use one or more of those functions.

ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

int GetSRDConfiguration(int device, int channel) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

RETURNED DATA

Integer representing the value of the SRD's configuration register (including signal, gain, resolution, bandwidth and CardBW).

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0);</pre>	Reads updated Synchro / Resolver to
if (errorCode == 0)	Digital registers from first Synchro /
	Resolver Test System, checking the error
int Cl =	code to determine if the read was
GetSRDConfiguration(0,0);	successful.
int C2 =	
GetSRDConfiguration(0,1);	If the read is successful the configuration
printf("Ch1	register value for both channels are
configuration:0x%4x",C1);	printed.
printf("Ch2	
configuration:0x%4x",C2);	
}	

GetSRDSignal

DESCRIPTION

Get a Synchro / Resolver to Digital channel's signal type (operating mode). ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

int GetSRDSignal(int device, int channel) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

RETURNED DATA

Integer representing the Synchro / Resolver to Digital channel's signal type. 0 = 90V synchro, 1 = 11.8V synchro, 2 = 90V resolver, 3 = 11.8V resolver, 4 = 2V Sin/Cos, 5 = 0 degree test signal, 6 = 90 degree test signal, 7 = 45 degree test signal.

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0);</pre>	Reads updated Synchro / Resolver
if (errorCode == 0)	to Digital registers from first Synchro
{	/ Resolver Test System, checking
if(GetSRDSignal(0,0) == 0)	the error code to determine if the
	read was successful.
<pre>printf("90V synchro");</pre>	
}	If the read is successful the signal
}	type for channel 1 is printed.

GetSRDGain

DESCRIPTION

Get a Synchro / Resolver to Digital channel's gain setting. ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

int GetSRDGain (int device, int channel) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

RETURNED DATA

Integer representing the Synchro / Resolver to Digital channel's voltage range. See Table 15 for the different input signal voltage ranges depending on the signal type.

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0);</pre>	Reads updated Synchro / Resolver to
if (errorCode == 0)	Digital registers from first Synchro /
if (GetSRDGain(0,0) == 0) {	error code to determine if the read was successful.
printf("10.03 - 13.57 Vrms");	
}	If the read is successful the voltage range setting for channel 1 is printed.
	Note that voltage range in the example code is based on a signal type of 11.8V Synchro/Resolver.
GetSRDResolution

DESCRIPTION

Get a Synchro / Resolver to Digital channel's resolution setting. ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

int GetSRDResolution(int device, int channel) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

RETURNED DATA

Integer representing the value of the Synchro / Resolver to Digital channel's resolution bits.

0 = 10 bit 1 = 12 bit 2 = 14 bit 3 = 16 bit

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0); int res = getSRDResolution(0,0)</pre>	Reads updated Synchro / Resolver to Digital registers from first Synchro / Resolver Test System, checking the error code to determine if the read was successful. Get the resolution from channel 1.

GetSRDBandwidth

DESCRIPTION

Get a Synchro / Resolver to Digital channel's bandwidth setting. ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

bool GetSRDBandwidth(int device, int channel) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

RETURNED DATA

Boolean value, false for low bandwidth setting and true for high bandwidth setting.

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0);</pre>	Reads updated Synchro / Resolver
if (errorCode == 0)	to Digital registers from first
<pre>{ int B1 = GetSRDBandwidth(0,0); if (B1) { </pre>	checking the error code to determine if the read was successful.
<pre>printf("High bandwidth setting");</pre>	
} else {	If the read is successful the bandwidth setting for channel 1 is printed.
<pre>printf("Low bandwidth setting"); } </pre>	

GetSRDCardBW

DESCRIPTION

Get a Synchro / Resolver to Digital channel's card bandwidth setting. This indicated the type of card (high or low) being accessed rather than the bandwidth setting which is retrieved with the GetSRDBandwidth function. ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

bool GetSRDCardBW(int device, int channel) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

channel = An integer for the channel of interest (0 for channel 1, 1 for channel 2).

RETURNED DATA

Boolean value, false for low bandwidth components (15 Hz to 45 Hz) and true for high bandwidth components (80 Hz to 300 Hz).

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0);</pre>	Reads updated Synchro / Resolver to
if (errorCode == 0)	Digital registers from first Synchro /
<pre>bool CB1 = GetSRDCardBW(0,0); if (CB1) {</pre>	error code to determine if the read was successful.
<pre>printf("High bandwidth card, 80 Hz to 300 Hz"); }</pre>	If the read is successful the device's bandwidth version is printed.
else	
{	
printf("Low bandwidth card,	
15 Hz to 45 Hz");	
}	
}	

AngleTo

DESCRIPTION

Convert the angle reading returned by GetSRDAngle to a degrees, minutes and seconds format. ReadSRDRegisters() should be called before this function to read the Synchro / Resolver to Digital registers and update the libraries' copy.

PROTOTYPE

int AngleTo(int angle, int component) ;

INPUT DATA

angle = The angle to be converted into a degrees, minutes, and seconds format.

component = Integer value between 0 and 2.

0 = degrees 1 = minutes

2 = seconds

RETURNED DATA

An integer representing the degrees, minutes or seconds component.

Code	Result/Returned Data
<pre>int errorCode = ReadSRDRegisters(0);</pre>	Reads updated Synchro / Resolver to
if (errorCode == 0)	Digital registers from first Synchro /
{	Resolver Test System, checking the error
int angle = GetSRDAngle(0, 0);	code to determine if the read was
<pre>int degrees = AngleTo(angle, 0);</pre>	successful.
int minutes = AngleTo(angle, 1);	
int seconds = AngleTo(angle, 2);	
printf("0x%4x = %d° %d' %d\"\n",	If the read is successful, retrieve the
angle, degrees, minutes, seconds);	angle from channel 1.
}	
	Converts the angle to degrees, minutes
	and seconds and prints all values.
	and seconds and prints all values.

GetRFOStatus

DESCRIPTION

Get a Reference Oscillator's status. The meaning of each of the bits in this register is described in the table below. ReadRFORegisters() should be called before this function to read the Reference Oscillator registers and update the libraries' copy.

PROTOTYPE

int GetRFOStatus(int device) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

RETURNED DATA

An integer representing the Reference Oscillator status register. See Table 16 below for a bit definition.

Code	Result/Returned Data
<pre>int errorCode = ReadRFORegisters(0); if (errorCode == 0) { int stat = GetRFOStatus(0); }</pre>	Reads updated Reference Oscillator registers from first Synchro / Resolver Test System, checking the error code to determine if the read was successful.
	If the read is successful, retrieve the Reference Oscillator status

GetRFOControl

DESCRIPTION

Get the value of the Reference Oscillator control register. This register will be 0 when Reference Oscillator output is turned off and non-zero when it is turned on. This register can be changed with the WriteRFOControl function. ReadRFORegisters() should be called before this function to read the Reference Oscillator registers and update the libraries' copy.

PROTOTYPE

int GetRFOControl(int device) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

RETURNED DATA

An integer representing the Reference Oscillator control register.

Code	Result/Returned Data
<pre>int errorCode = ReadRFORegisters(0); if (errorCode == 0) { int cntl = GetRFOControl(0); }</pre>	Reads updated Reference Oscillator registers from first Synchro / Resolver Test System, checking the error code to determine if the read was successful.
	If the read is successful, retrieve the current state of the Reference Oscillator control register.

GetRFOAmplitude

DESCRIPTION

Gets the currently programmed Reference Oscillator output amplitude. This value can be changed with the WriteRFOAmplitude function. ReadRFORegisters() should be called before this function to read the Reference Oscillator registers and update the libraries' copy.

PROTOTYPE

int GetRFOAmplitude(int device) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

RETURNED DATA

An integer representing the current programmed amplitude in tenths of a volt. (i.e. An integer value of 257 represents 25.7 Vrms).

Code	Result/Returned Data
<pre>int errorCode = ReadRFORegisters(0); if (errorCode == 0) { int amp = GetRFOAmplitude(0); }</pre>	Reads updated Reference Oscillator registers from first Synchro / Resolver Test System, checking the error code to determine if the read was successful.
	If the read is successful, retrieve the current programmed Reference Oscillator amplitude.

GetRFOFrequency

DESCRIPTION

Gets the currently programmed Reference Oscillator output frequency. This value can be changed with the WriteRFOFrequency function. ReadRFORegisters() should be called before this function to read the Reference Oscillator registers and update the libraries' copy.

PROTOTYPE

int GetRFOFrequency (int device) ;

INPUT DATA

device = An integer between 0 and 63 for the device of interest.

RETURNED DATA

An integer representing the current programmed frequency in hertz (Hz).

Code	Result/Returned Data
<pre>int errorCode = ReadRFORegisters(0); if (errorCode == 0) { int cntl = GetRFOControl(0); }</pre>	Reads updated Reference Oscillator registers from first Synchro / Resolver Test System, checking the error code to determine if the read was successful.
	If the read is successful, retrieve the current programmed Reference Oscillator amplitude.

7 APPENDIX

7.1 Input Signal Voltage Ranges

The following is a table that defines the parameter **value** in the **WriteSRDGain()** function depending on which signal mode is selected using the **WriteSRDSignal()** function.

Table 15. Input Signal Voltage Ranges					
	Absolute Voltage Range (Vrms)		Accuracy +/	- 1 Isb (max)	
value =	2V (Sin/Cos)	11.8V (Synchro/Resolver)	90V (Synchro/Resolver)	Carrier Frequency < 5 kHz	Carrier Frequency >= 5 kHz
0	1.70 – 2.30	10.03 – 13.57	76.50 – 103.50	1 arc min	3 arc mins
1	1.26 – 1.71	7.46 – 10.95	56.90 - 77.00	2.3 arc mins	4 arc mins
2	0.95 – 1.27	5.55 – 7.51	42.30 - 57.30	2.3 arc mins	4 arc mins
3	0.69 – 0.94	4.13 – 5.59	31.49 – 42.61	2.3 arc mins	4 arc mins
4	0.70 – 0.52	3.07 – 4.15	23.43 - 31.69	2.3 arc mins	4 arc mins
5	0.38 – 0.52	2.28 - 3.09	17.43 – 23.58	2.3 arc mins	4 arc mins
6	0.29 – 0.39	1.70 – 2.30	12.96 – 17.54	2.3 arc mins	4 arc mins

7.2 Reference Oscillator Status

Table 16. Reference Oscillator Status Summary			
Bit	Description		
7:6	Board type "10" – 26 volt unit "11" – 115 volt unit		
5	Frequency / Voltage programming error '0' – Normal '1' – Programming value error The oscillator programmed frequency and/or output voltage read by the board microcontroller from the CPLD control registers are out of allowed ranges. The flag remains set until correct values are written to CPLD control registers or the standby mode is selected.		
4	 Hardware fault '0' – Hardware OK '1' – A board hardware fault has been detected Logical OR of the following conditions: the microcontroller +3.3V supply voltage is out of range (+3.0V to +3.6V), microcontroller watchdog reset has occurred, SPI potentiometer setting error, microcontroller flash access error Once set, the bit will remain set if the fault condition persists 		
3	Microcontroller temperature out of range '0' – Normal '1' – The microcontroller temperature error The board microcontroller temperature is outside of the allowed range (-40°C and +85°C) Once set the bit will remain set if the condition persists		
2	Audio amplifier DC-DC converter fault '0' – Normal '1' – DC-DC converter fault has been detected The D-Class audio amplifier DC-DC converter supply voltage is out of allowed range (+16V to 19.5V) and/or the current drawn by the converter from +5V supply rail exceeds 4A peak Once set the bit will remain set if the condition persists		
1	Oscillator output fault '0' – Normal '1' – The oscillator D-Class audio amplifier has shut down possibly due to short circuit on the oscillator output Once set the bit will remain set if the condition persists		
0	Oscillator output overload '0' – Normal '1' – The impedance of the load connected to the output is too low. The output voltage has been limited to a safe value Once set the bit will remain set if the condition persists		

7.3 Error codes

Table 17. Error Codes Summary			
Error code	Description	Details / Recommended Action	
4	I/O error		
3	Device not opened	Low level driver error. Check USB connection to	
2	Device not found	device and call BuildDeviceList.	
1	Invalid handle		
0	Success	Operation completed successfully. No further action required.	
-1	Write timeout		
-2	Write failed		
-3	Read timeout	Communications problem try again	
-4	Read failed	Communications problem, try again.	
-5	Nothing to read		
-6	Read fewer bytes than expected		
-7	Data valid still on after Synchro / Resolver to Digital configuration write	Sending of Synchro / Resolver to Digital configuration data was successful but when registers were read back it appears the Test System has not acted on the new data. Try changing the configuration again.	
-8	Wrong Modbus slave address	Communications problem, data corrupted in transit.	
-9	Wrong Modbus CRC value	Try again	
-10	Invalid entry	One of more parameters passed to the function were invalid or out of bounds, e.g. a frequency below 400 Hz passed to WriteRFOFrequency.	

7.4 Quick Reference Wiring Guide

Figure 36. Quick Reference Wiring Guide (Front)

from unit before connecting wires

Figure 37. Quick Reference Wiring Guide (Back)

8 ORDERING INFORMATION

Included Accessories:

- 1 USB cable
- 1 Universal AC power adapter
- 2 14-pin Mating plug-in connector
- 1 10-pin Mating plug-in connector
- 1 12-pin Mating plug-in connector
- 1 Flat head screwdriver
- 1 Quick reference wiring guide "laminated"
- Synchro/Resolver software CD
- Binary angle card

Included Software:

SB-36610SX- S/R Test System Software Package

Operating System:

- 0 = Windows® XP/Vista/7