
AceXtreme®
C Software Development Kit

Software User's Manual

© 2010 Data Device Corporation. All trademarks are the property of their respective owners.

Connectivity Power Control

Model: BU-69092SX

For more information: www.ddc-web.com/BU-69092SX

The AceXtreme® C Software Development Kit (SDK) provides the framework for efficient development of
applications with DDC’s series of MIL-STD-1553 components and cards.

DDC's Data Networking Solutions
MIL-STD-1553 | ARINC 429 | Fibre Channel

As the leading global supplier of data bus components, cards, and software solutions for the military, commercial,
and aerospace markets, DDC’s data bus networking solutions encompass the full range of data interface
protocols from MIL-STD-1553 and ARINC 429 to USB, and Fibre Channel, for applications utilizing a spectrum of
form-factors including PMC, PCI, Compact PCI, PC/104, ISA, and VME/VXI.

DDC has developed its line of high-speed Fibre Channel and Extended 1553 products to support the real-time
processing of field-critical data networking netween sensors, compute notes, data storage displays, and weapons
for air, sea, and ground military vehicles.

Whether employed in increased bandwidth, high-speed serial communications, or traditional avionics and ground
support applications, DDC's data solutions fufill the expanse of military requirements including reliability,
determinism, low CPU utilization, real-time performance, and ruggedness within harsh environments. Out use of
in-house intellectual property ensures superior mutli-generational support, independent of the life cycles of
commercial devices. Moreover, we maintain software compatibility between product generations to protect our
customers' investments in software development, system testing, and end-product qualification.

DDC provides an assortment of quality MIL-STD-1553 commercial, military, and COTS grade cards and
components to meet your data conversion and data interface needs. DDC supplies MIL-STD-1553 board level
products in a variety of form factors including AMC, USB, PCI, cPCI, PCI-104, PCMCIA, PMC, PC/104, PC/104-
Plus, VME/VXI, and ISAbus cards. Our 1553 data bus board solutions are integral elements of military, aerospace,
and industrial applications. Our extensive line of military and space grade components provide MIL-STD-1553
interface solutions for microprocessors, PCI buses, and simple systems. Our 1553 data bus solutions are
designed into a global network of aircraft, helicopter, and missle programs.

DDC also has a wide assortment of quality ARINC-429 commercial, military, and COTS grade cards and
components, which will meet your data conversion and data interface needs. DDC supplies ARINC-429 board
level products in a variety of form factors including AMC, USB, PCI, PMC, PCI-104, PC/104 Plus, and PCMCIA
boards. DDC's ARINC 429 components ensure the accurate and reliable transfer of flight-critical data. Our 429
interfaces support data bus development, validation, and the transfer of flight-critical data aboard commercial
aerospace platforms.

MIL-STD-1553

ARINC 429

DDC has developed its line of high-speed Fibre Channel network access controllers and switches to support the
real-time processing demands of field-critical data networking between sensors, computer nodes, data storage,
displays, and weapons, for air, sea, and ground military vehicles. Fibre Channel's architecture is optimized to
meet the performance,reliability, and demanding environmental requirements of embedded, real time, military
applications, and designed to endure the multi-decade life cycle demands of military/aerospace programs.

Fibre Channel

D A T A D E V I C E C O R P O R A T I O N

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

i

BU-69092SX ACEXTREME® C SDK
SOFTWARE USER’S MANUAL

MN-69092SX-002

The information provided in this Software User’s Manual is believed to be accurate;

however, no responsibility is assumed by Data Device Corporation for its use, and no
license or rights are granted by implication or otherwise connection therewith.

Specifications are subject to change without notice.

Please visit our Web site at http://www.ddc-web.com/ for the latest information.

All rights reserved. No part of this Software User’s Manual may be reproduced or
transmitted in any form or by any mean, electronic, mechanical photocopying

recording, or otherwise, without the prior written permission of Data Device Corporation.

105 Wilbur Place
Bohemia, New York 11716-2426

Tel: (631) 567-5600, Fax: (631) 567-7358
World Wide Web - http://www.ddc-web.com

For Technical Support - 1-800-DDC-5757 ext. 7771
United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264
France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425
Germany - Tel: +49-(0)89-15 00 12-11, Fax: +49-(0)89-15 00 12-22
Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689
Asia - Tel: +65- 6489-4801 © 2010 Data Device Corp.

http://www.ddc-web.com/
http://www.ddc-web.com/
http://www.ddc-web.com/

R E C O R D O F C H A N G E

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

ii

Please note that this manual was developed from the EMACE PLUS SDK Manual (MN-69092SX-001).
Please refer to the last page of this manual for record of change to the original manual.

Revision Date Pages Description

A 2/2009 All Initial Release - Added the AceXtreme information throughout the
manual. New section of functions added – Multi-RT

B 5/2009 71-80, 123,
567, 604,
637, 639,
675, 694,
701, 707

Minor updates on indicated pages

C 6/2009 161, 163,
165, 167,
231, 235

Function reference descriptions edited. Changed
acexMRTDataBlkCreate to aceRTDataBlkCreate.

D 8/2009 519 - 954 Minor edits made to aceRTSetAddress, aceRTSetAddrSource, and
AceRTModeCodeWriteData. New Function subsections AvionicsI/O
and Discrete I/O added. New functions and structures added for
software version 3.1.2

E 1/2010 449-461,
509-521

Edited the following functions: aceBCOpCodeCreate,
acexBCMemObjCreate, acexBCMemObjDelete,
acexBCMemWrdCreate, acexBCMemWrdDelete,
acexBCMemWrdRead, acexBCMemWrdWrite

F 7/2010 All New Format Applied. Function sections removed and created into
new manual.

G 10/2010 22 Removed section 1 that had the software licensing

Table 4 added dots for RTMTI in both SF and MF columns

Added a note for ACE _MODE_MT and ACE_MODE_RTMT as “Not
Recommended for new designs” for AceXtreme

H 12/2010 120 In table 45, in the ACE_RT_OPT_ALT_STS row,
"aceRTStatusBitsXlear()" was changed to "aceRTStatusBitsClear()"

J 5/2011 17 Updated Table 3 to incorporate BU-67211U
K 12/2011 48 Updated Table 15
L 4/2012 73, 128 Updated aceBCGetMsgFromIDRaw, Changed text from “cognizant”

to “contiguous”
M 12/2015 various Updates to Windows, Linux, and VxWorks sections. New sections

added for DIOs and AIOs, updated description of the BSW for all
modes.

http://www.ddc-web.com/

T A B L E O F C O N T E N T S

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

iii

1 PREFACE ... 12
1.1 Text Usage .. 12
1.2 Special Handling and Cautions ... 12
1.3 Trademarks ... 12
1.4 Technical Support ... 12

2 OVERVIEW .. 13
2.1 Description .. 13
2.2 Features .. 13
2.3 System Requirements ... 13
2.4 DDC MIL-STD-1553 Device Families .. 14
2.5 AceXtreme SDK Directory Structure for Windows ... 15

2.5.1 AceLibrarySupport .. 16
2.5.2 Documentation .. 17
2.5.3 Drivers... 17
2.5.4 Firmware ... 18
2.5.5 Include Directory ... 18
2.5.6 Lib Directory .. 18
2.5.7 Samples .. 18
2.5.8 TesterSimulatorLibrarySupport .. 18
2.5.9 Utilities .. 19

2.6 AceXtreme SDK Directory Structure for Linux ... 20
2.6.1 ddccm ... 21
2.6.2 docs .. 21
2.6.3 drivers ... 21
2.6.1 Firmware ... 22
2.6.2 libraries ... 22
2.6.3 samples ... 24
2.6.4 tools .. 24

2.7 AceXtreme SDK Directory Structure for VxWorks ... 24
2.7.1 bsp .. 25
2.7.2 ddccm ... 25
2.7.3 docs .. 26
2.7.4 drivers ... 26
2.7.5 Firmware ... 27
2.7.6 libraries ... 27
2.7.7 samples ... 27
2.7.8 tools .. 27

3 USING THE ACEXTREME C SDK ... 29
3.1 Initialization and Setup .. 29

http://www.ddc-web.com/

T A B L E O F C O N T E N T S

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

iv

3.1.1 Logical Device Numbers ... 29
3.1.2 Assigning Logical Device Numbers ... 30
3.1.3 Initializing a MIL-STD-1553 Channel ... 32

3.2 General Concepts ... 33
3.2.1 Object Unique Identifiers (OUID) ... 33
3.2.2 Hardware Time Tags ... 34
3.2.3 Configuring Hardware Interrupts and Callback Routines 35
3.2.4 Interrupt Status Queues .. 37
3.2.5 Discrete Digital I/O .. 39
3.2.6 Avionics I/O ... 46
3.2.7 Triggers ... 51

3.3 1553 Modes of Operation .. 62
3.3.1 Bus Controller (ACE_MODE_BC) ... 62
3.3.2 IRIG-106 Chapter 10 Monitor (ACE_MODE_MTI) ... 111
3.3.3 Classic Monitor (ACE_MODE_MT) ... 132
3.3.4 Remote Terminal (ACE_MODE_RT) ... 145
3.3.5 Multi-RT (ACE_MODE_MRT) .. 175
3.3.6 Combination Modes .. 193
3.3.7 Error Injection .. 203
3.3.8 Amplitude .. 209
3.3.9 Self-Test Capabilities (ACE_MODE_TEST) .. 209
3.3.10 Testing Hardware Memory .. 211

4 INCLUDED DEMOS ... 215
4.1 General Demo Programs .. 215

4.1.1 AIO.c ... 215
4.1.2 BcAsync.c ... 216
4.1.3 BCAsync2.c .. 216
4.1.4 BCDemo.c ... 216
4.1.5 BCDBuf.c .. 216
4.1.6 RTDBuf.c .. 217
4.1.7 RTMode.c ... 217
4.1.8 RTMTDemo.c .. 217
4.1.9 MTPoll.c .. 218
4.1.10 MTIrq.c .. 218
4.1.11 DIO.c ... 218
4.1.12 DIOALL.c .. 219
4.1.13 Irigdemo.c ... 219
4.1.14 Looptest.c ... 219
4.1.15 Mti2disk.c .. 220
4.1.16 Mti2disk2.c .. 220
4.1.17 Mtidemo.c ... 220
4.1.18 Mtiread.c ... 220
4.1.19 MtiRead2.c .. 220

http://www.ddc-web.com/

T A B L E O F C O N T E N T S

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

v

4.1.20 RTirq.c .. 220
4.1.21 RTMTiDemo.c ... 220
4.1.22 RTPoll.c .. 221
4.1.23 Tester.c ... 221

4.2 AceXtreme Demo Programs .. 221
4.2.1 Aesdemo.c .. 221
4.2.2 Bcmti.c .. 221
4.2.3 MTIedemo.c .. 221
4.2.4 MRTMTi.c ... 221
4.2.5 RTDataArray.c .. 222
4.2.6 DataArray.c ... 222
4.2.7 DataStrm.c .. 222
4.2.8 Mrtdemo.c ... 222

4.3 AceXtreme MF Samples ... 222
4.3.1 BCei .c (AceXtreme MF only) .. 222
4.3.2 BCIMR.c (AceXtreme MF only) ... 223
4.3.3 BCMemobj .c (AceXtreme MF only) .. 223
4.3.4 BCMRT.c (AceXtreme MF only) .. 223
4.3.5 BCMRTMTI.c (AceXtreme MF only) .. 224
4.3.6 BCOpcode.c (AceXtreme MF only) ... 224
4.3.7 BCTime.c (AceXtreme MF only) .. 224
4.3.8 DBCDEMO.c (AceXtreme MF only) ... 225
4.3.9 MRTEI.c (AceXtreme MF only) .. 225
4.3.10 MTRDemo.c (AceXtreme MF only) .. 225
4.3.11 ReplayDemo.c (AceXtreme MF only) .. 225
4.3.12 Resptime.c (AceXtreme MF only) .. 226
4.3.13 Trigdio.c (AceXtreme MF only) .. 226
4.3.14 Trigger.c (AceXtreme MF only) ... 226
4.3.15 Voltage.c (AceXtreme MF only) ... 226

http://www.ddc-web.com/

L I S T O F F I G U R E S

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

vi

Figure 1. AceXtreme SDK for Windows Directory Structure .. 15
Figure 2. Ace Library Option Screen ... 16
Figure 3. Tester Simulator Library Option Screen ... 19
Figure 4. AceXtreme SDK for Linux Directory Structure .. 20
Figure 5. AceXtreme SDK for VxWorks Directory Structure .. 25
Figure 6. Logical Device Number Assignments ... 29
Figure 7. DDC Card Manager for Windows ... 30
Figure 8. DDC Card Manger for Linux ... 31
Figure 9. Defined BC Messages Showing OUID and Message Configuration 34
Figure 10. Trigger State Diagram .. 53
Figure 11. Relationship of BC Data Blocks .. 65
Figure 12. Relationship of BC Message Blocks ... 67
Figure 13. Time To Next Message .. 68
Figure 14. Inter-message Gap Time .. 68
Figure 15. BC Major and Minor Frames .. 74
Figure 16. BC Opcode Relationships .. 79
Figure 17. Minor Frame Defined as a Collection of BC Opcodes .. 80
Figure 18. BC Framing/Sequencing Object Relation ... 86
Figure 19. BC Host Buffer MSGSTRUCT Object Definition ... 93
Figure 20. BC Message Block MSGSTRUCT Object Definition .. 98
Figure 21. IMR Frame Sequence .. 107
Figure 22. MT-I 1553 Data Packet – Channel Specific Data ... 116
Figure 23. MT-I 1553 Data Packet – Block Status Word ... 117
Figure 24. MT-I Data Packet Generation – Interrupt Events .. 119
Figure 25. MT-I Time Data Packet – Channel Specific Data ... 125
Figure 26. Monitor Command and Data Stacks Relationship .. 133
Figure 27. MT Host Buffer MSGSTRUCT Object Definition .. 140
Figure 28. MT Stack MSGSTRUCT Object Definition ... 143
Figure 29. RT Command Stack, SA Mapping Table and Data Blocks Relationship 146
Figure 30. Single-Buffer RT Data Block Storage ... 155
Figure 31. Double-Buffered RT Data Block Storage .. 156
Figure 32. Circular-Buffered RT Data Block Storage ... 157
Figure 33. RT Command Stack MSGSTRUCT Object Definition .. 163
Figure 34. RT Data Block MSGSTRUCT Object Definition ... 170
Figure 35. AceXtreme BC Error Injection .. 206
Figure 36. AceXtreme RT Error Injection ... 209

http://www.ddc-web.com/

L I S T O F T A B L E S

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

vii

Table 1. DDC MIL-STD-1553 Family Features ... 14
Table 2. AceXtreme SDK Directory Structure for Windows .. 15
Table 3. Drivers of DDC Hardware ... 17
Table 4. Discontinued Drivers of DDC Hardware for Windows ... 17
Table 5. AceXtreme SDK Directory Structure for Linux .. 21
Table 6. Drivers of DDC Hardware for Linux .. 22
Table 7. Discontinued Drivers of DDC Hardware for Linux ... 22
Table 8. AceXtreme SDK Directory Structure for VxWorks .. 25
Table 9. Drivers of DDC Hardware for VxWorks .. 26
Table 10. Discontinued Drivers of DDC Hardware for VxWorks .. 27
Table 11. MIL-STD-1553 Channel Modes ... 32
Table 12. Initialization Minimal Input Requirements .. 33
Table 13. Data Object Types ... 34
Table 14. Interrupt Events ... 36
Table 15. Interrupt Status Queue Header Values .. 38
Table 16. Trigger IDs ... 52
Table 17. Trigger Inputs (u8InTmtTrg or u8InGptTrg) ... 55
Table 18. Trigger Events ... 57
Table 19. Trigger Status Block .. 60
Table 20. Trigger Interrupt Status Block .. 61
Table 21. BC Configuration Options .. 63
Table 22. BC Configuration Options for AceXtreme Hardware .. 63
Table 23. Synchronous Message Block Type Create Functions ... 69
Table 24. Synchronous Message Options ... 70
Table 25. Asynchronous Message Block Type Create Functions.. 71
Table 26. Asynchronous Message Options ... 73
Table 27. BC Opcode Definitions and Parameter Meanings ... 75
Table 28. Intermessage Routines .. 76
Table 29. Block Data Size ... 77
Table 30. BC Host Buffer Raw Format for One Message .. 91
Table 31. BC Host Buffer Message Location and Purge Options (wMsgLoc) 92
Table 32. BC Block Status Word ... 94
Table 33. BC Block Status Word Retry Count ... 95
Table 34. BC Raw Format for One Message ... 96
Table 35. BC Interrupt Event Options .. 100
Table 36. Intermessage Routines .. 105
Table 37. MT-I General Data Packet Format ... 112
Table 38. MT-I 1553 Complete Data Packet.. 115
Table 39. MT-I 1553 Data Packet - Intra-Packet Data Header .. 116
Table 40. MT-I 1553 Data Packet – Data Portion (1553 Command / Data / Status Words) 118
Table 41. MT-I Configuration Parameters ... 120
Table 42. MT-I Configuration Options .. 121
Table 43. Getting 1553 Data Packets: Blocking Options ... 124

http://www.ddc-web.com/

L I S T O F T A B L E S

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

viii

Table 44. MT-I Time Data Packet Format ... 124
Table 45. BCD Day Format ... 126
Table 46. MT-I Time Data Packet - Time Data .. 126
Table 47. Getting Time Data Packets - Blocking Options .. 128
Table 48. MT Host Buffer Raw Format for One Message .. 138
Table 49. Host Buffer Message Location and Purge Options (wMsgLoc) 139
Table 50. MT Raw Format for Message One .. 141
Table 51. Stacks Message Location and Purge Options (wMsgLoc) 142
Table 52. MT Block Status Word ... 144
Table 53. MT Interrupt Events ... 145
Table 54. RT Configuration Parameters .. 147
Table 55. RT Configuration Options .. 147
Table 56. Busy Bit Lookup Table ... 150
Table 57. Standard RT Status Word .. 151
Table 58. Internal Built-in-Test (BIT) Data Word.. 152
Table 59. RT Data Block Types ... 154
Table 60. RT Command Stack Raw Format for One Message.. 161
Table 61. RT Block Status Word ... 164
Table 62. RT Host Buffer Raw Format for One RT Message .. 169
Table 63. Mode Code Family Types .. 172
Table 64. Mode Code Interrupt Event Options .. 172
Table 65. Command Legalization Lookup Table ... 174
Table 66. RT Interrupt Event Options .. 175
Table 67. MRT Configuration Parameters ... 176
Table 68. Multi-RT Configuration Options ... 177
Table 69. Busy Bit Lookup Table ... 179
Table 70. Standard RT Status Word .. 180
Table 71. Internal Built-In-Test (BIT) Data Word ... 181
Table 72. Mode Code Family Types .. 186
Table 73. Mode Code Interrupt Event Options .. 186
Table 74. Command Legalization Lookup Table ... 188
Table 75. RT Interrupt Event Options .. 189
Table 76. MRT Intermessage Routines ... 192
Table 77. RTMT-I Configuration Parameters ... 194
Table 78. RTMT-I Configuration Options ... 195
Table 79. RTMT Configuration Parameters ... 198
Table 80. RTMT Configuration Options ... 199
Table 81. ACEX_ERR_INJ Structure – BC Error Injection .. 204
Table 82. ACEX_ERR_INJ Structure – RT Error Injection .. 207

http://www.ddc-web.com/

L I S T O F C O D E E X A M P L E S

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

ix

Code Example 1. Initializing LDN #0 to Act as a Bus Controller (BC) 33
Code Example 2. Setting Resolution (2µs/LSB) & Value of the Hardware 48-bit Time Tag 35
Code Example 3. Setting the Interrupt Callback Routine for Hardware Time Tag Rollover 37
Code Example 4. Reading an Entry from the Interrupt Status Queue (ISQ) 39
Code Example 5. Configuring Discrete lines. .. 40
Code Example 6. Reading DIO Channel direction ... 41
Code Example 7. Setting DIO Line Output Value. ... 42
Code Example 8. Setting DIO Line Output Value. ... 43
Code Example 9. Using aceSetDiscAll() and aceGetDiscAll(). .. 44
Code Example 10. Configuring DIO time stamp and ISR. ... 45
Code Example 11. Starting Time Tag recording and reading Time tags. 46
Code Example 12. Configuring Avionic Discrete lines. .. 47
Code Example 13. Reading AIO Channel direction ... 48
Code Example 14. Setting AIO Line Output Value. ... 49
Code Example 15. Setting AIO Line Output Value. ... 50
Code Example 16. Using aceSetAioAll() and aceGetAioAll(). ... 51
Code Example 17. ACEX_TRG_CONFIG_TMT Structure .. 54
Code Example 18. ACEX_TRG_CONFIG_GPT Structure .. 54
Code Example 19. Selecting an Event .. 56
Code Example 20. Event Enable and Select ... 58
Code Example 21. ACEX_DISC_CONFIG Structure .. 59
Code Example 22. Configure a Discrete I/O .. 59
Code Example 23. Get Trigger and Interrupt Status .. 61
Code Example 24. Get Latched Time Tag .. 61
Code Example 25. Configuring the BC to Support “High-Priority” Asynchronous Messaging ... 64
Code Example 26. Creating and Initializing a BC Data Block .. 66
Code Example 27. Creating a BC to RT Synchronous Message Block 69
Code Example 28. Creating a BC to RT Asynchronous Message Block 72
Code Example 29. Creating Two XEQ (Execute Message) Opcodes 78
Code Example 30. Creating a Minor Frame with Two Opcodes .. 81
Code Example 31. Creating a Push Timetag to GPQ Opcode .. 82
Code Example 32. Reading an Entry from the GPQ ... 82
Code Example 33. Creating a GPF Opcode (Clearing GPF 1) .. 83
Code Example 34. Setting GPF State via Host (Setting GPF 1).. 83
Code Example 35. Creating an XEQ (Execute Message) Dependant on GPF5 84
Code Example 36. Creating a Subroutine Call Opcode to call Minor Frame “MNR1”................ 85
Code Example 37. Creating a Major Frame (Calling 2 Minor Frames) 85
Code Example 38. Starting the Bus Controller (BC) .. 87
Code Example 39. Stopping the Bus Controller (BC) .. 88
Code Example 40. Sending a High-Priority Asynchronous Message .. 88
Code Example 41. Sending a Low-Priority Asynchronous Message ... 89
Code Example 42. Installing the BC Host Buffer ... 90
Code Example 43. Reading Raw Data From the Host Buffer .. 92
Code Example 44. Reading a Decoded Message from the Host Buffer 93

http://www.ddc-web.com/

L I S T O F C O D E E X A M P L E S

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

x

Code Example 45. Reading Raw Data From a BC Message Block ... 97
Code Example 46. Reading a Decoded Message from the BC Message Block 99
Code Example 47. Reading a BC Data Block.. 99
Code Example 48. Enable/Disbale DBC Support .. 101
Code Example 49. Configuring Replay .. 103
Code Example 50. Starting Replay .. 103
Code Example 51. Pausing / Continue Replay .. 104
Code Example 52. Retrieve Replay Status ... 105
Code Example 53. Configure BC IMRs ... 110
Code Example 54. Configure Discrete to IMR ... 111
Code Example 55. Filtering Out (Disabling) RT5 Transmit SubAddress 19 121
Code Example 56. Starting the MT-I Monitor .. 122
Code Example 57. Stopping the MT-I Monitor ... 122
Code Example 58. Getting a MT-I 1553 Data Packet .. 123
Code Example 59. Enabling Time Data Packets ... 127
Code Example 60. Getting a MT-I 1553 Time Data Packet (TDP) .. 127
Code Example 61. Open MT-I File with Write Access ... 129
Code Example 62. Open MT-I File .. 129
Code Example 63. Read Packet from File ... 130
Code Example 64. Write Packet to File ... 131
Code Example 65. Get File Offset ... 132
Code Example 66. Set File Offset ... 132
Code Example 67. Filtering Out (Disabling) RT5 Transmit SubAddress 19 135
Code Example 68. Starting the MT Monitor ... 135
Code Example 69. Stopping the MT Monitor ... 136
Code Example 70. Installing the MT Host Buffer ... 137
Code Example 71. Reading Raw Data From the Host Buffer .. 138
Code Example 72. Reading a Decoded Message from the Host Buffer 140
Code Example 73. Reading Raw Data From the Stacks ... 142
Code Example 74. Reading a Decoded Message from the Stacks ... 143
Code Example 75. Setting the RT Address Source and Value .. 149
Code Example 76. Setting the Busy Bit for all TRANSMIT Commands to SA19 (“Own Addr”, TX,

SA 19) .. 150
Code Example 77. Setting the “Service Request” Bit in the RT Status Word 151
Code Example 78. Configure and Read the Internal BIT Word ... 153
Code Example 79. Creating a Single-Buffered RT Data Block .. 158
Code Example 80. Mapping RTDBLK1 to TX ad RX messages for Subaddress 19 159
Code Example 81. Starting the Remote Terminal (RT) ... 160
Code Example 82. Stopping the Remote Terminal (RT) ... 160
Code Example 83. Reading Raw Data from the RT Command Stack 162
Code Example 84. Reading a Decoded Message from the RT Command Stack 163
Code Example 85. Reading a “Single-Buffered” Data Block ... 166
Code Example 86. Reading a “Circular-Buffered” Data Block ... 167
Code Example 87. Installing the RT Host Buffer ... 168
Code Example 88. Reading Raw Data From the Host Buffer .. 169
Code Example 89. Reading a Decoded Message from the Host Buffer 171

http://www.ddc-web.com/

L I S T O F C O D E E X A M P L E S

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

xi

Code Example 90. Reading Mode Code Data for “Synchronize”(10001) 171
Code Example 91. Enabling an “Transmit Vector Word” Mode Code Interrupt Event 173
Code Example 92. Legalizing a Specific 1553 Command Word (“Own Addr”, TX, SA19, All

Word Counts) ... 175
Code Example 93. Setting the Busy Bit for all TRANSMIT Commands to SA19 (“Own Addr”, TX,

SA 19) .. 179
Code Example 94. Setting the “Service Request” Bit in the RT Status Word 180
Code Example 95. Configure and Read the Internal BIT Word ... 182
Code Example 96. Mapping RTDBLK1 to TX ad RX messages for RTADDRESS_1,

Subaddress 19 ... 183
Code Example 97. Starting the Remote Terminal (RT) ... 184
Code Example 98. Stopping the Remote Terminal (RT) ... 184
Code Example 99. Reading Mode Code Data for “Synchronize”(10001) for RT Address 1 ... 185
Code Example 100. Enabling an “Transmit Vector Word” Mode Code Interrupt Event 187
Code Example 101. Legalizing a Specific 1553 Command Word (“Own Addr”, TX, SA19, All

Word Counts) ... 188
Code Example 102. Configuring RT 1’s Response Time Value. ... 190
Code Example 103. Configuring RT 1’s Response Timeout Value. .. 191
Code Example 104. Clearing Discrete Configuration .. 191
Code Example 105. Configure Discrete to BC IMR ... 193
Code Example 106. Configure Discrete to MRT IMR .. 193
Code Example 107. Starting the MT-I Monitor and Remote Terminal 197
Code Example 108. Stopping the MT-I Monitor and Remote Terminal 197
Code Example 109. Starting the MT Monitor and Remote Terminal 200
Code Example 110. Stopping the MT Monitor and Remote Terminal 201
Code Example 111. Configuring the BC’s Response timeout value. 202
Code Example 112. Configuring the BC’s Error Injection. ... 205
Code Example 113. Configuring the RT’s Error Injection. ... 208
Code Example 114. TESTRESULT Structure ... 210
Code Example 115. Running a Hardware Register Test ... 210
Code Example 116. Running a Hardware Memory Test ... 211
Code Example 117. Running a 1553 Protocol Test ... 212
Code Example 118. Running a Hardware Interrupt Test ... 213
Code Example 119. Running Hardware Vectors ... 214

http://www.ddc-web.com/

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

12

1 PREFACE
This manual uses typographical conventions to assist the reader in understanding the
content. This section will define the text formatting used in the rest of the manual.

1.1 Text Usage
• BOLD – text that is written in bold letters indicates important information

and table, figure, and chapter references.

• Courier New – is used to indicate code examples.

• <…> - Indicates user entered text or commands.

1.2 Special Handling and Cautions

The BU-69092 is delivered on a Compact Disc. Proper care should be used to
ensure that the discs are not damaged by heat.

1.3 Trademarks

All trademarks are the property of their respective owners.

1.4 Technical Support

In the event that problems arise beyond the scope of this manual, you can contact In
the event that problems arise beyond the scope of this manual, you can contact DDC
by the following:

US Toll Free Technical Support:
1-800-DDC-5757, ext. 7771

Outside of the US Technical Support:
1-631-567-5600, ext. 7771

Fax:
1-631-567-5758 to the attention of DATA BUS Applications

DDC Website:
www.ddc-web.com/ContactUs/TechSupport.aspx

Please note that the latest revisions of Software and Documentation are available for
download at DDC’s Web Site, www.ddc-web.com.

http://www.ddc-web.com/

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

13

2 OVERVIEW
2.1 Description

The AceXtreme® C Software Development Kit (SDK) provides the framework for
developing applications for DDC’s series of MIL-STD-1553 components and cards,
while using minimal development time.

This SDK is written such that all low level access to the DDC MIL-STD-1553
communication processor is simplified through a set of API functions in the interface
and interrupt control modules. This abstraction allows one common software interface
to any DDC MIL-STD-1553 cards or components.

Note: Version 3.0.1 of the BU-69092S0 only supports the AceXtreme boards.

2.2 Features
• Library of "C" Routines Available for:

Windows® XP (32 Bit) and Vista/7/8 (32/64 Bit), Linux®(32/64 Bit), and
VxWorks® (32-Bit) Operating Systems

• Documentation Provided

• Provides Modular, Portable, & Readable Code to Reduce Software
Development Time

• "C" Structures Eliminate Need to Learn Detailed Address/Bit Maps and Data
Formats

• Includes Sample Programs and Compiled Libraries for Quick Startup

• Includes Multiple Environment/Compiler Support

2.3 System Requirements

One or more of the following:

• Windows XP, Windows Vista 32/64-bit, Windows 7 32/64-bit, Windows 7
32/64-bit, Linux, or VxWorks (32-Bit) Operating System.

• Workbench software development environment for VxWorks platforms.

• An appropriate compiler or development environment.

• Contact Factory for additional Operating Systems.

http://www.ddc-web.com/

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

14

2.4 DDC MIL-STD-1553 Device Families

DDC has been developing MIL-STD-1553 interface cards and components for 30
years. There have been numerous generations of devices to add new functionality
and improved performance. The BU-69092Sx Software Development Kit supports the
3 latest generations of MIL-STD-1553 hardware families (AceXtreme, E²MA, and
EMA).

1. AceXtreme :
2. E2MA (Extended Enhanced Mini-ACE):
3. EMA (Enhanced Mini-ACE):

Table 1. DDC MIL-STD-1553 Family Features
Family EMA

Released 1999
E²MA

Released 2006
AceXtreme

Single-Function
Released 2009

AceXtreme
Multi-Function
Released 2010

Part Number BU-6555X
BU-6556X

BU-65577X
BU-65578X
BU-6559XX

BU-671XX BU-672XX

Time-Tag support 16-bit
Internal 2µs

48-Bit
Internal 1µs

48-Bit
Internal 100ns

48-Bit
Internal 100ns

Hardware Triggers Not-Supported Not-Supported Not-Supported Supported

Inter-Message
Routines

Not-Supported Not-Supported Not-Supported Supported

Replay Not-Supported Not-Supported Not-Supported Supported

BC Message Gap >= 6µs >= 6µs >= 6µs >= 3.5µs

RT Response Time 7µs 7µs 7µs >= 3.5µs

BC Frame Time 16-bit 16-bit 16-bit 24-bit

BC Streaming/Data
Arrays

Not-Supported Not-Supported Supported Supported

RT Streaming/Data
Arrays

Not-Supported Not-Supported Supported Supported

Multiple RT Addresses Not-Supported Not-Supported Supported Supported

MT IRIG106 Chapter 10 Not-Supported Supported Supported Supported

MT Advanced Error
Sampling (AES)

Not-Supported Not-Supported Not-Supported Supported

BC Memory OpCodes Not-Supported Not-Supported Supported Supported

Error Injection Not-Supported Not-Supported Not- Supported Supported

MIL-STD-1553
Operating Modes

See Table 11. MIL-STD-1553 Channel Modes

http://www.ddc-web.com/

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

15

Note: Support for most EMACE and E2MA Devices with the AceXtreme SDK ended
with version 3.5.3. Check the SDK’s release notes for which boards of the
EMACE and E2MA families are still supported with the most current version of
the SDK.

2.5 AceXtreme SDK Directory Structure for Windows
The installation of the AceXtreme SDK for Windows will result in the creation of the
folder C:\DDC\aceXtremeSDKvX.Y.Z (where XYZ represents the version of the SDK).
The “AceXtremeSDKvX.Z.Y” folder contains the drivers, library, header and samples.
Also included are the binary firmware files for applicable DDC hardware. The
directory also includes the ACE Library Support Package and Tester Simulator Library
Support Package. The Ace Library Support Package allows applications written for
the ACE Library (BU-6908x) to run on any DDC MIL-STD-1553 device without the
need to recompile source code. While the Tester Simulator Library Support package
offers support for applications written for the Tester Simulator Library (BU-69068x),
allowing the applications to run on any Multi-Function AceXtreme Based card without
the need to recompile source code.

Figure 1. AceXtreme SDK for Windows Directory Structure

Table 2. AceXtreme SDK Directory Structure for Windows
Folder Name Description of Contents

AceLibrarySupport Ace4.lib, Ace4.dll, include files and Ace Library samples.

Documentation ReleaseNotes.txt, and ReadMe.txt. Contains version information on SDK.

Drivers Driver (.sys) and information files (inf) for driver installation.

Firmware Firmware for applicable DDC hardware and manual for updating flash

Include Header files for the AceXtreme SDK.

Lib Library files required for linking to AceXtreme dll (emacepl.dll and emacepl.lib).

Samples Samples for AceXtreme SDK (See Section 2.5.7).

TesterSimulatorLibSupport TestSim32.lib, TestSim.lib, include files and Tester Simulator library samples

Utilities Application used to enable Tx inhibit and BC Disable on an AceXtreme Device.

http://www.ddc-web.com/

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

16

2.5.1 AceLibrarySupport

The “AceLibrarySupport” Directory contains the files needed to support current 1553
devices using applications originally written for the ACE Library (BU-6908X). This
directory is an optional directory and is only installed when the ACE Library Support
option is selected during the AceXtreme SDK installation.

Figure 2. Ace Library Option Screen

The ACE Library Support option is designed to run applications originally developed
using the ACE library on current 1553 devices without requiring a recompile of the
source code. The AceLibrarySupport Directory contains a new Ace4.lib and Ace4.dll,
(the new ace4.dll is copied to C:\Windows\System32 and C:\windows\sysWoW64
upon installation of the ACE Library support option), the header files for the ACE
Library and the original samples that came with the ACE Library.

http://www.ddc-web.com/

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

17

2.5.2 Documentation

The “Documentation” directory contains the Release Notes and ReadMe files for the
AceXtreme SDK. The release notes contain information regarding each SDK version
such as, the current firmware version for applicable DDC hardware, known issues and
corrected defects. Other files included in this directory are the software license
agreement and a link to this user’s manual.

2.5.3 Drivers

The BU-69092Sx software package includes Operating system specific drivers based
on the specific release version desired. Table 3 below details the driver file names for
Windows (BU-69092S0) based on the DDC MIL-STD-1553 Hardware that are
supported in the current version of the AceXtreme SDK.

Table 3. Drivers of DDC Hardware
Windows Supported Cards

acexpci.sys BU-67101Q, BU-67104C, BU-67105, BU-67106K, BU-67107X, BU-67108C, BU-67109C,
BU-67110X,BU-67112X, BU-67118Y/Z, BU-67114H, BU-67206BK, BU-67210X

acexusb.sys BU-67102U, BU-67103U, BU-67113, BU-67202U, BU-67211U

e2mausb.sys BU-65590U, BU-65591U

emapci.sys BU-65586H, BU-65596F/M

Emaebrpci.sys BU-65580M

Remote Access BU-67115W, BU-67116W, BU-67119W, BU-67121W

Support for most EMACE and E2MA Devices with the AceXtreme SDK ended with
version 3.5.3. Drivers for these cards are not part of the current release of the
AceXtreme SDK. Check the SDK’s release notes for which boards of the EMACE and
E2MA families are still supported with the most current version of the SDK. Table 4
shows the drivers removed from after version 3.5.3 of the AceXtreme SDK.

Table 4. Discontinued Drivers of DDC Hardware for Windows

Windows Supported Cards
e2mapci.sys BU-65577F/M/C, BU-65578 F/M/C, BU-65590F/M/C, BU-65591F/M/C

emapccrd.sys BU-65553M2

emapci.sys BU-65565F/M, BU-65566M, BU-65569i, BU-65569T/B

Make sure to install the AceXtreme SDK before installing the device driver for your
hardware.

http://www.ddc-web.com/

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

18

2.5.4 Firmware

DDC AceXtreme and E2MA devices support firmware updates. These updates can be
performed via the DDC Card Manager. The “Firmware” directory contains the
instructions on how to flash your device (FLASH_UTLITY.pdf) and the latest firmware
for all applicable DDC hardware, listed by hardware part number. It is recommended
to use the latest firmware for your device. The DDC Card Manager will notify the user
if there is an out of date firmware on your device. For more information on flashing
your DDC device please refer to the Firmware update procedure.

2.5.5 Include Directory

The “Include” directory contains the header files needed for compiling an application
written for the AceXtreme SDK. When creating an application the user will have to
configure his compiler to include the path to this folder in order to correctly compile an
executable.

2.5.6 Lib Directory

The “Lib” directory contains the emacepl.lib file, which is needed to compile an
application written against the AceXtreme SDK. The lib folder contains two sub
directories, Win32 and x64. The Win32 directory contains the 32-bit version of the
emacepl.lib, while the x64 version contains the 64-bit version of the library file. Also
included in each sub- directory is a second copy the emacepl.dll which is also installed
in C:\Windows\System32 and C:\Windows\SysWow64. The file emacepls.lib is a
statically built copy of the emacepl.lib file.

2.5.7 Samples

The “samples” directory contains the C source samples for the AceXtreme SDK. Each
sample sub-directory contains an applicable project file and a compiled executable
located in the (Win32\x64)\Release sub-directory of the sample. For more information
on the supplied samples, see Section 4.

2.5.8 TesterSimulatorLibrarySupport

The “TesterSimulatorLibrarySupport” Directory contains the files needed to support
the AceXtreme Multi-Function 1553 devices using applications originally written for the
Tester Simulator Library (BU-69068Sx). This directory is an optional directory and is
only installed when the Tester Simulator Library support option is selected during the
AceXtreme SDK installation.

http://www.ddc-web.com/
http://www.ddc-web.com/Pub/0/446.ashx

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

19

Figure 3. Tester Simulator Library Option Screen

The Tester Simulator Library support option is designed to run applications originally
developed using the Tester Simulator library on current AceXtreme Multi-function
1553 devices without requiring a recompile of the source code. The
“TesterSimulatorLibSupport” Directory contains a new testsim32.lib and testsim32.dll,
(the new testsim32.dll is copied to C:\Windows\System32 and
C:\Windows\sysWoW64 upon installation of the Tester Simulator Library support
option), the header files for the Tester Simulator Library and the original samples that
came with the Tester Simulator Library.

2.5.9 Utilities

The DDC AceXtreme cards have a unique feature allowing the user to enable both “Tx
Inhibit” (Transmit Inhibit) and/or “BC Disable” (Bus Controller Disable) on selected
MIL-STD-1553 channel(s). This directory contains the utilities to create a binary file
which disables transmissions on a 1553 channel on the AceXtreme Device. For more
information on Transmit Inhibit and BC Disable see Application Note #50
“AceXtreme Transmit Inhibit and Bus Controller Disable Features”.

http://www.ddc-web.com/
http://www.ddc-web.com/Pub/213/560.ashx

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

20

2.6 AceXtreme SDK Directory Structure for Linux

The installation of the AceXtreme SDK for Linux will result in the creation of the folders
~/aceXtremeSDKvX.Y.Z (where XYZ represents the version of the SDK). The location
and directory name may vary, as it is up to the users discretion on where to store the
AceXtreme SDK.

The “AceXtremeSDKvX.Z.Y” folder contains the drivers, library, header and samples,
and DDC Card Manager. Also included are the binary firmware files for applicable
DDC hardware. The directory also includes the ACE Library Support Package and
Tester Simulator Library Support Package. The Ace Library Support Package allows
applications written for the ACE Library (BU-6908x) to run on any DDC MIL-STD-1553
device without the need to recompile source code. While the Tester Simulator Library
Support package offers support for applications written for the Tester Simulator
Library (BU-69068x), allowing the applications to run on any Multi-Function
AceXtreme Based card without the need to recompile source code.

The AceXtreme Library files and header files are located in the
“~/aceXtremeSDKvX.Y.Z /libraries/emacepl directory. The AceXtreme SDK samples
are located in the “~/aceXtremeSDKvX.Y.Z /samples/emacepl directory.

Figure 4. AceXtreme SDK for Linux Directory Structure

http://www.ddc-web.com/

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

21

Table 5. AceXtreme SDK Directory Structure for Linux
Folder Name Description of Contents
ddccm DDC Card Manager source code.

docs ReleaseNotes.txt, and ReadMe.txt. Contains version information on SDK.

drivers Driver source directory.

firmware Firmware for applicable DDC hardware and manual for updating flash.

libraries Library support files, for AceXtreme (emacepl), Ace Library (acetoemace), and Tester
Simulator Library (tstsim).

samples Samples for AceXtreme SDK (See Section 2.5.7).

tools Library install scripts, Application to enable Tx inhibit and BC Disable.

2.6.1 ddccm

The “ddccm” directory contains the source files of the DDC Card Manager (located in
the ddccm/src directory) and the make file (located in the ddccm/prj directory). Once
ddccm is built, the makefile will copy the binary of ddccm to /usr/sbin.

The DDC Card Manager (ddccm) is used to assign a Logical Device Number (LDN) to
any MIL-STD-1553 or ARINC 429 devices. Firmware updates are also done through
ddccm.

2.6.2 docs

The “docs” directory contains the Release Notes, Install instructions, and software
license files for the AceXtreme SDK. The release notes contain information regarding
each SDK version such as, the current firmware version for applicable DDC hardware,
known issues and corrected defects.

2.6.3 drivers

The “drivers” directory contains two sub-directories, “acex” and “legacy”. The “acex”
directory contains the PCI/PCIe Linux devices drivers for the AceXtreme based
devices, while the “legacy” folder contains the AceXtreme USB, EMACE PCI drivers.

Table 6 below details the driver file names for Linux (BU-69092S1) based on the DDC
MIL-STD-1553 Hardware.

http://www.ddc-web.com/

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

22

Table 6. Drivers of DDC Hardware for Linux
Linux Name Supported Cards

acex BU-67101Q, BU-67104C, BU-67105, BU-67106K, BU-67107X, BU-67108C, BU-67109C, BU-
67110X,BU-67112X, BU-67118Y/Z, BU-67114H, BU-67206BK, BU-67210X

legacy/acexusb BU-67102U, BU-67103U, BU-67113, BU-67202U, BU-67211U

legacy/e2mausb BU-65590U, BU-65591U

legacy/emapci BU-65596F/M

Remote Access BU-67115W, BU-67116W, BU-67119W, BU-67121W

Support for most EMACE and E2MA Devices with the AceXtreme SDK ended with
version 3.7.0. Drivers for these cards are not part of the current release of the
AceXtreme SDK. Check the SDK’s release notes for which boards of the EMACE and
E2MA families are still supported with the most current version of the SDK. Table 4
shows the drivers removed from after version 3.7.0 of the AceXtreme SDK.

Table 7. Discontinued Drivers of DDC Hardware for Linux

Linux Supported Cards
e2mapci.sys BU-65577F/M/C, BU-65578 F/M/C, BU-65590F/M/C, BU-65591F/M/C

emapci.sys BU-65565F/M, BU-65566M, BU-65569i, BU-65569T/B

2.6.1 Firmware

Most DDC MIL-STD-1553 devices support firmware updates. These updates can be
performed via the DDC Card Manager. The “Firmware” directory contains the
instructions on how to flash your device (FLASH_UTLITY.pdf) and the latest firmware
for all applicable DDC hardware, listed by hardware part number. For more
information on flashing your DDC device please refer to the Firmware update
procedure.

2.6.2 libraries

The “libraries” directory contains the binary library files and the header files for the
AceXtreme SDK (emacepl), the Ace Library (acetoemace) and the Tester Simulator
Library (tstsim).

2.6.2.1 AceXtreme Library (emacepl)

The “~/aceXtremeSDKvX.Y.Z /libraries/emacepl” directory contains the AceXtreme
files needed to build applications against the AceXtreme SDK.

http://www.ddc-web.com/
http://www.ddc-web.com/Pub/0/446.ashx
http://www.ddc-web.com/Pub/0/446.ashx

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

23

The emacepl/bin directory contains the binary library files, which are copied to the
/usr/lib/ directory with the “install-emacepl.sh” script (located in the tools directory),
and the AceXtreme Library header files (located in the /src directory). The samples
for the AceXtreme SDK can be found in the “~/aceXtremeSDKvX.Y.Z
/samples/emacepl directory.

2.6.2.2 Ace Library (acetoemace)

The “~/aceXtremeSDKvX.Y.Z/libraries/acetoemace” directory contains the files
needed to support current 1553 devices using applications originally written for the
ACE Library (BU-6908X). The ACE Library support is designed to run applications
originally developed using the ACE Library on current 1553 devices without requiring
a recompile of the source code.

The acetoemace directory contains the binary library files, which are copied to the
/usr/lib/ directory with the “install-acetoemace.sh” script (located in the tools directory),
and the Ace Library header files (located in the /src directory). The samples for the
Ace Library can be found in the “~/aceXtremeSDKvX.Y.Z /samples/acetoemace
directory.

2.6.2.3 Remote Access (ethernet_socket)
The “~/aceXtremeSDKvX.Y.Z/libraries/ethernet_socket” directory contains the files
needed to Remote access mode for DDC ABD and AIC devices. The files in the
ethernet_socket directory allow for an application written and executed on the Linux
host machine to access DDC’s ABD or AIC over Ethernet. For more information on
remote access usage, see the ABD or AIC Software manual.

2.6.2.4 Tester Simulator Library (tstsim)

The “~/aceXtremeSDKvX.Y.Z/libraries/tstsim” Directory contains the files needed to
support the AceXtreme Multi-Function 1553 devices using applications originally
written for the Tester Simulator Library (BU-69068Sx). The Tester Simulator Library
support is designed to run applications originally developed for the Tester Simulator
library without requiring a recompile of the source code.

 The “~/aceXtremeSDKvX.Y.Z/libraries/tstsim directory contains the binary library files,
which are copied to the /usr/lib/ directory with the “install-tstsim.sh” script (located in
the tools directory), and the Tester Simulator Library header files (located in the /src
directory). The samples for the Tester Simulator Library can be found in the
“~/aceXtremeSDKvX.Y.Z /samples/tstsim directory.

http://www.ddc-web.com/

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

24

2.6.3 samples

The “samples” directory contains the C source samples for the AceXtreme SDK.
There is a subdirectory for each Library supported by the AceXtreme SDK (emacepl,
acetoemace, and tstsim). Each library sample sub-directory contains an applicable prj
folder which contains the makefile used to build the sample, and a src folder which
holds the C source file. For more information on the supplied samples, see Section 4.

2.6.4 tools

The tools folder is used to store the install scripts to install the libraries supported by
the AceXtreme SDK.

The DDC AceXtreme cards have a unique feature allowing the user to enable both “Tx
Inhibit” (Transmit Inhibit) and/or “BC Disable” (Bus Controller Disable) on selected
MIL-STD-1553 channel(s). The tx_bc_init_gen directory contains the utilities to create
a binary file which disables transmissions on a 1553 channel on the AceXtreme
Device. For more information on Transmit Inhibit and BC Disable see Application
Note #50 “AceXtreme Transmit Inhibit and Bus Controller Disable Features”.

2.7 AceXtreme SDK Directory Structure for VxWorks

The installation of the AceXtreme SDK for VxWorks will result in the creation of the
folders “\BU69092S2” (where XYZ represents the version of the SDK). The location
and directory name may vary, as it is up to the users discretion on where to store the
AceXtreme SDK.

The “\BU69092S2” folder contains the drivers, library, header and samples, and DDC
Card Manager. Also included are the binary firmware files for applicable DDC
hardware.

The AceXtreme Library files and header files are located in the “\BU69092S2
\libraries\emacepl” directory. The AceXtreme SDK samples are located in the
“\BU69092S2\samples\emacepl” directory.

http://www.ddc-web.com/
http://www.ddc-web.com/Pub/213/560.ashx
http://www.ddc-web.com/Pub/213/560.ashx

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

25

Figure 5. AceXtreme SDK for VxWorks Directory Structure

Table 8. AceXtreme SDK Directory Structure for VxWorks
Folder Name Description of Contents
bsp Contains the ddcBspConfig.c files for Pre-VxBus Driver model.

ddccm DDC Card Manager source code.

docs ReleaseNotes.txt, and ReadMe.txt. Contains version information on SDK.

drivers Driver source directory.

firmware Firmware for applicable DDC hardware and manual for updating flash.

libraries Support files for AceXtreme (emacepl), Ace (acetoemace), and Tester Simulator (tstsim) libraries.

samples Samples for AceXtreme SDK (See Section 2.5.7).

tools Library install scripts, Application to enable Tx inhibit and BC Disable.

The readme.txt file contains instructions on how to integrate the BU-69092S2
AceXtreme SDK for VxWorks with your BSP or Downloadable kernel module. The
readme.txt file will point to the appropriate driver install/build instructions and will also
list what project settings need to be modified for the AceXtreme SDK.

2.7.1 bsp

The “bsp” folder contains the SBC specific ddcBspConfig.c file needed when using the
Pre-VxBus driver model. The Pre-VxBus driver is required for VxWorks 6.5 and
earlier, and for SMP VxWorks 6.6 and later. The folder also has a User-Defined folder
which contains the skeleton of the ddcBspConfig.c file so that it can be modified to for
a SBC that isn’t supported by the BU-69092S2 VxWorks AceXtreme SDK.

2.7.2 ddccm

The “ddcm” directory contains the source files of the DDC Card Manager. The DDC
Card Manager (ddccm) is used to assign a Logical Device Number (LDN) to any MIL-

http://www.ddc-web.com/

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

26

STD-1553 or ARINC 429 devices. Firmware updates are also done through ddccm.
Running ddccm is necessary to initialize the device, and must be done once per boot
of the system.

2.7.3 docs

The “docs” directory contains the Release Notes, driver setup instructions, and
software license files for the AceXtreme SDK. The release notes contain information
regarding each SDK version such as, the current firmware version for applicable DDC
hardware, known issues and corrected defects.

The “pre-vxbus_driver_readme.txt” file should be used when using the Pre-VxBus
Driver model (VxWorks 6.5 and earlier). This file will instruct the user on how to build
the driver and integrate the ddcBspConfig.c file into the kernel image.

The “vxbus_driver_readme.txt” file will instruct the user how to build the VxBus driver
for VxWorks 6.6 and later. This file will detail the steps to build the driver and how to
include the driver in the kernel image.

2.7.4 drivers

The “drivers” directory contains three sub-directories, “acex” and “legacy” and pre-
vxbus. The “acex” directory contains the PCI/PCIe VxWorks devices drivers for the
AceXtreme based devices, while the “legacy” folder contains the AceXtreme USB,
EMACE PCI drivers.

Table 6 below details the driver file names for VxWorks (BU-69092S2) based on the
DDC MIL-STD-1553 Hardware.

Table 9. Drivers of DDC Hardware for VxWorks
VxWorks Name Supported Cards
acex BU-67101Q, BU-67104C, BU-67105, BU-67106K, BU-67107X, BU-67108C, BU-67109C, BU-

67110X,BU-67112X, BU-67118Y/Z, BU-67114H, BU-67206BK, BU-67210X, BU-67301I

legacy/acexusb BU-67102U, BU-67103U, BU-67113U, BU-67202U, BU-67211U

legacy/emapci BU-65596F/M

Remote Access BU-67115W, BU-67116W, BU-67119W, BU-67121W

Support for most EMACE and E2MA Devices with the AceXtreme SDK ended with
version 3.3.4. Drivers for these cards are not part of the current release of the
AceXtreme SDK. Check the SDK’s release notes for which boards of the EMACE and
E2MA families are still supported with the most current version of the SDK. Table 4
shows the drivers removed from after version 3.3.4 of the AceXtreme SDK.

http://www.ddc-web.com/

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

27

Table 10. Discontinued Drivers of DDC Hardware for VxWorks

VxWorks Supported Cards
e2mapci.sys BU-65577F/M/C, BU-65578F/M/C, BU-65590F/M/C, BU-65591F/M/C

emapci.sys BU-65565F/M, BU-65566M/R, BU-65569i, BU-65569T/B,

2.7.5 Firmware

Most DDC MIL-STD-1553 devices support firmware updates. These updates can be
performed via the DDC Card Manager. The “Firmware” directory contains the
instructions on how to flash your device (FLASH_UTLITY.pdf) and the latest firmware
for all applicable DDC hardware, listed by hardware part number. For more
information on flashing your DDC device please refer to the Firmware update
procedure.

2.7.6 libraries

The “libraries” directory contains the binary library files and the header files for the
AceXtreme SDK (emacepl), and the Remote Access mode on the ABD and AIC.

2.7.6.1 AceXtreme Library (emacepl)

The “\BU69092S2\libraries\emacepl” directory contains the AceXtreme files needed to
build applications against the AceXtreme SDK. The samples for the AceXtreme SDK
can be found in the “\BU69092S2\samples\emacepl” directory.

2.7.6.2 Remote Access (ethernet_socket)
The “\BU69092S2\libraries\ethernet_socket” directory contains the files needed to
Remote access mode for DDC ABD and AIC devices. The files in the ethernet_socket
directory allow for an application written and executed on the VxWorks host machine
to access DDC’s ABD or AIC over Ethernet. For more information on remote access
usage, see the ABD or AIC Software manual.

2.7.7 samples

The “samples” directory contains the C source samples for the AceXtreme SDK.
Each library sample sub-directory contains an the C source file. For more information
on the supplied samples, see Section 4.

2.7.8 tools

The tools folder is used to store the install script to copy the driver source to the
appropriate VxWorks $(WIND_BASE) directory. The DDC AceXtreme cards have a

http://www.ddc-web.com/
http://www.ddc-web.com/Pub/0/446.ashx
http://www.ddc-web.com/Pub/0/446.ashx

O V E R V I E W

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

28

unique feature allowing the user to enable both “Tx Inhibit” (Transmit Inhibit) and/or
“BC Disable” (Bus Controller Disable) on selected MIL-STD-1553 channel(s). The
tx_bc_init_gen directory contains the utilities to create a binary file which disables
transmissions on a 1553 channel on the AceXtreme Device. For more information on
Transmit Inhibit and BC Disable see Application Note #50 “AceXtreme Transmit
Inhibit and Bus Controller Disable Features”.

http://www.ddc-web.com/
http://www.ddc-web.com/Pub/213/560.ashx

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

29

3 USING THE ACEXTREME C SDK
3.1 Initialization and Setup

3.1.1 Logical Device Numbers

The AceXtreme C SDK uses Logical Device Numbers to access DDC hardware. A
Logical Device Number (LDN) is a unique identifier referring to a particular MIL-STD-
1553 channel. Most SDK functions will require a target LDN as the first parameter.
Depending on your Operating System, the Logical Device Numbers will be auto-
assigned or will require some user interaction.

Figure 6. Logical Device Number Assignments

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

30

3.1.2 Assigning Logical Device Numbers

3.1.2.1 Windows

Logical Device Numbers in Windows are assigned using the DDC Card Manager
Applet, found in the Windows Control Panel. The DDC Card Manager will display all
connected hardware and will allow a unique LDN to be assigned to each channel.
The DDC Card Manager also supports firmware upgrades (for applicable hardware);
along with a driver update utility. To assign an LDN to any MIL-STD-1553 channel:

1. Select “MIL-STD-1553 Devices” in the left-hand column
2. Click on the desired device in the detected hardware list
3. Set/Change the Device Number via the drop-down list provided below

Figure 7. DDC Card Manager for Windows

The DDC Card Manager for Windows will display the Driver version for the board,
along with the Firmware version on the device (E2MA and AceXtreme devices only).
The ‘Update Firmware’ button can be used to update the firmware on an applicable
device.

Updating the device driver can also been accomplished by clicking on the ‘Update
Driver’ button. A window will open so that the new firmware can be selected and then
proceed with the firmware update.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

31

The ‘Options’ and ‘Rescan’ buttons are used to search for any remote access devices
on the network. Under the ‘Options’ window, the IP address of the remote access
device can be configured, while the ‘Rescan’ button can be pressed to have the card
manager look for any device changes to the system.

3.1.2.2 Linux

Logical Device Numbers in Linux are assigned using the DDCCM Text-Based Card
Manager (See Figure 8) ./ddccm, found in the /usr/bin folder. The Card Manager will
display all connected hardware and will allow a unique LDN to be assigned to each
channel. Use the menu-driven interface to assign LDN’s to all detected channels.

Figure 8. DDC Card Manger for Linux

3.1.2.3 VxWorks

Logical Device Numbers in VxWorks are auto-assigned by calling the ddccm()
function (defined in ddccm source folder). This function will call the necessary DDC
VxWorks API calls to setup and detected hardware. After executing this function, a
message will be displayed to the terminal informing the user of any found devices and
their assigned LDN’s. The DDC Card Manager for VxWorks can be used to update
the firmware on E2MA and AceXtreme devices.

The call to ddccm() has two optional parameters. The first parameter is for family
type, with the second parameter allows for the displaying of the device table which
shows the assigned LDNs.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

32

The family types for the first parameter are ‘1’ for MIL-STD-1553 devices only, ‘2’ for
ARINC 429 Devices only, or -1 for both 1553 and 429 devices. If both parameters are
blank when ddccm is called the DDC Card Manager will then default to -1 to configure
both 1553 and 429, and display the assigned LDNs.

3.1.3 Initializing a MIL-STD-1553 Channel

After an LDN is assigned, that particular MIL-STD-1553 channel can be initialized to
one of the following modes.

Note: Some modes may not be available on all hardware. For more information on
each mode, see Section 3.3.

Table 11. MIL-STD-1553 Channel Modes

Mode Description EMA/
E²MA

AceXtreme

Single
Function

Multi-
Function

ACE_MODE_BC Operate as MIL-STD-1553 Bus Controller (BC) • • •

ACE_MODE_RT Operate as a single MIL-STD-1553 Remote
Terminal (RT) • • •

ACE_MODE_MTI Operate as an IRIG-106 Chapter 10 compliant
monitor (MT-I) • • •

ACE_MODE_RTMTI Operate as a combined IRIG-106 Chapter 10
Monitor and Remote Terminal (RTMT-I) • • •

ACE_MODE_MT Classic Monitor (MT) • •** •**

ACE_MODE_RTMT Combined Remote Terminal and Classic
Monitor (RTMT) • •** •**

ACE_MODE_BCMTI Operates as a combined BC and IRIG-106
Chapter 10 Monitor • •

ACE_MODE_MRT Operate in Multi-RT mode • •

ACE_MODE_MRTMTI Operate in combined Multi-RT and IRIG-106
Chapter 10 Monitor • •

ACE_MODE_ALL Operates in combined BC, Multi-RT mode, and
IRIG-106 Chapter 10 Monitor •

**Note : ACE_MODE_MT and ACE_MODE_RTMT are “Not Recommended for new designs” with

 AceXtreme hardware.

Channel initialization is accomplished via the aceInitialize() function. The following
minimal inputs are required.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

33

Table 12. Initialization Minimal Input Requirements
Parameter Name Function

1 Logical Device Number (LDN) The LDN of target channel to initialize

2 Fixed Value: ACE_ACCESS_CARD Informs the SDK that physical DDC
hardware is to be used

3 Mode of Operation Desired mode of Operation (See above)

S16BIT nResult;

/* Initialize Device */
nResult = aceInitialize(
 0, /* LDN */
 ACE_ACCESS_CARD, /* Access Mode */
 ACE_MODE_BC, /* Mode of Operation */
 0, /* Reserved (Adv) */
 0, /* Reserved (Adv) */
 0); /* Reserved (Adv) */

if(nResult)
 printf(“aceInitialize() Error: Code %d\n”, nResult);

Code Example 1. Initializing LDN #0 to Act as a Bus Controller (BC)

3.2 General Concepts

The following general concepts apply to more than one mode of operation within the
AceXtreme C SDK. It is recommended that this section be read in its entirety to gain
a general understanding and before moving on to Section 3.3.

3.2.1 Object Unique Identifiers (OUID)

Every data object created within the AceXtreme C SDK requires an Object Unique
Identifier (OUID) to be assigned. An OUID is a unique numerical value assigned by
the user that can be used to reference that object. A valid OUID can range from 1 to
65535 and must not conflict with any other OUID already assigned for that particular
object type.

The OUID will be assigned during the object’s Create function. Once assigned, the
OUID will be used to reference the object for it to be modified, accessed or deleted.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

34

Table 13. Data Object Types
Operation Mode Data Object Type

BC Instruction Opcodes

BC Data Blocks

BC Messages

BC Frames

RT/multi-RT Data Blocks

Figure 9. Defined BC Messages Showing OUID and Message Configuration

3.2.2 Hardware Time Tags

All DDC hardware has a built-in, hardware-driven, free running timing device or time
tag. This time tag is used as the relative time for all message time stamping.

The resolution of the hardware Tag is configurable. Resolution can be configured at
fixed values ranging from 100ns to 64µs/LSb. Please reference the respective
hardware manual of the MIL-STD-1553 device for more information on the supported
options. In addition, some DDC devices support an external time source. To change
the time tag resolution or to use an external time source, see the
aceSetTimeTagRes() API function.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

35

The hardware time tag can be read or written independently using the following
functions. Please see the BU-69092SX-003 AceXtreme Reference Guide for proper
syntax.

 16-Bit Time Tag
 aceSetTimeTagValue()
 aceGetTimeTagValue()

 48-bit Time Tag (AceXtreme / E²MA Only)
 aceSetTimeTagValueEx()
 aceGetTimeTagValueEx()

S16BIT nResult;

/* Set Timetag Resolution */
nResult = aceSetTimeTagRes(
 0, /* LDN */
 ACE_TT_2US); /* Time Tag Resolution */

if(nResult)
 printf(“aceSetTimeTagValueRes() Error: Code%d\n”,nResult);

/* Set Timetag Value*/
nResult = aceSetTimeTagValueEx(
 0, /* LDN */
 0x0011223344556677); /* New TT Value */

if (nResult)
 printf(“aceSetTimeTagValueEx() Error: Code %d\n”,nResult);

Code Example 2. Setting Resolution (2µs/LSB) & Value of the Hardware
48-bit Time Tag

3.2.3 Configuring Hardware Interrupts and Callback Routines

The AceXtreme C SDK allows the user to setup an event-driven callback routine
based on a hardware interrupt (when available). This allows the user to be notified of
specific events and/or error conditions, thus relieving the need to continuously poll the
1553 data bus.

Each interrupt event, as well as the callback routine, is assigned using the
aceSetIrqConditions() function. Each call to this function will enable or disable the
specified events based on the value of the second parameter (TRUE or FALSE).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

36

The usage of each event is covered in more detail in the Modes of Operation section
3.3.

Table 14. Interrupt Events
Bit Description

31(MSB) Master Interrupt

30 BC OP Code Parity Error

29 RT Illegal Command/Message Monitor Message Received

28 General Purpose Queue/Interrupt Status Queue Rollover

27 Call Stack Pointer Register Error

26 BC Trap OP Code

25 RT Command Stack 50% Rollover

24 RT Circular Buffer 50% Rollover

23 Monitor Command Stack 50% Rollover

22 Monitor Data Stack 50% Rollover

21 Enhanced BC IRQ3

20 Enhanced BC IRQ2

19 Enhanced BC IRQ1

18 Enhanced BC IRQ0

17 Bit Test Complete

16 Bit Trigger

15 Reserved

14 RAM Parity Error

13 Transmitter Timeout

12 BC/RT Command Stack Rollover

11 MT Command Stack Rollover

10 MT Data Stack Rollover

9 Handshake Failure

8 BC Retry

7 RT Address Parity Error

6 Time Tag Rollover

5 RT Circular Buffer Rollover

4 RT Subaddress Control Word EOM

3 BC End of Frame

2 Format Error

1 BC Status Set/RT Mode Code/MT Pattern Trigger

0 (LSB) End of Message

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

37

S16BIT nResult;

void_DECL MyISR_RT(S16BIT DevNum, U32BIT dwIrqStatus)
{
 printf(“TimeTag Rollover occurred\n”);
}

/* Configure Interrupt Events */
nResult = aceSetIrqConditions(
 0, /* LDN */
 TRUE, /* Enable Event(s) below */
 ACE_IMRI_TT_ROVER, /* TT Rollover Event */
 MyISR); /* Callback Routine */

if(nResult)
 printf(“aceSetIrqConditions() Error: Code %d\n”, nResult);

Code Example 3. Setting the Interrupt Callback Routine for Hardware
Time Tag Rollover

Note: The frequency of Time Tag Rollover is dependent on resolution and bit-
length of the time tag.

3.2.4 Interrupt Status Queues

The AceXtreme C SDK includes the capability for generating an Interrupt Status
Queue (ISQ). This queue provides a chronological history of interrupt generating
conditions and events. The Interrupt Status Queue is 64 words deep, providing the
capability to store entries for up to 32 monitored messages. It is available in RT, MT
and RTMT modes of operation.

Once enabled, the ISQ logs each event received into a queue using a 2-word
(ISQENTRY) structure. Any entries on the queue can be read in FIFO order using the
aceISQRead() function.

wISQHeader

wISQData

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

38

By repeatedly reading the ISQ using the aceISQRead() function, the user will have an
in-order list of events that have occurred. The wISQHeader word of the ISQENTRY
structure will identify the specific event.

Table 15. Interrupt Status Queue Header Values

Bit Definition for Message
Interrupt Event

Definition for Non-Message
Interrupt Event

15 Transmitter Timeout Not Used

14 Illegal Command Not Used

13 Monitor Data Stack 50% Rollover Not Used

12 Monitor Data Stack Rollover Not Used

11 RT Circular Buffer 50% Rollover Not Used

10 RT Circular Buffer Rollover Not Used

9 Monitor Command (Descriptor)
Stack 50% Rollover Not Used

8 Monitor Command (Descriptor)
Stack Rollover Not Used

7 RT Command (Descriptor) Stack
50% Rollover Not Used

6 RT Command (Descriptor) Stack
Rollover Not Used

5 Handshake Fail Not Used

4 Format Error Time Tag Rollover

3 Mode Code Interrupt RT Address Parity Error

2 Subaddress Control Word EOM Protocol Self-Test Complete

1 End-Of-Message (EOM) RAM Parity Error

0 “1” For Message Interrupt Event;
“0” For Non-Message Interrupt Event

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

39

S16BIT nResult;
ISQENTRY sIsqEntry;

/*Enable ISQ */
nResult = aceISQEnable(
 0, /* LDN */
 TRUE); /* Enable ISQ */

if (nResult)
 printf(“aceISQEnable() Error: Code %d\n”, nResult);

/* Read an ISQ entry */
nResult = aceISQRead(
 0, /* LDN */
 &sIsqEntry); /* ISQ Entry storage */

if(nResult)

 printf(“aceISQRead() Error: Code %d\n”, nResult);
else
 printf(“Event %04x has occurred!\n”,sIsqEntry.wISQHeader);

Code Example 4. Reading an Entry from the Interrupt Status Queue (ISQ)

3.2.5 Discrete Digital I/O

DDC’s AceXtreme boards include support for discrete digital signals that can be
individually programmed as inputs or outputs. The number of discrete digital I/O (DIO)
pins on the AceXtreme device varies for each device and it is recommend referring to
the device’s hardware manual for more information on the digital I/O configuration of a
specific device.

The discrete digital I/O can be used for a variety of applications including triggering
events, indicating status, or general purpose use. For DDC’s AceXtreme Multi-IO
boards, the discrete digital I/O may be accessed from either the AceXtreme SDK (BU-
69092Sx) or the ARINC 429 Multi-IO SDK (DD-42992Sx).

3.2.5.1 Configuring Discrete Digital

Each discrete line can be set for input or output via the aceSetDiscDir() function. The
function requires the LDN, the discrete line to modify and the direction to set the
discrete line. The direction is configured by passing into the function either
DISC_OUTPUT (1) for an output or DISC_INPUT (0) for an input.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

40

S16BIT nResult;
U16BIT wDioChannel_1 = 1;
U16BIT wDioChannel_2 = 2;

/*Set the DIO 1 to an output */
nResult = aceSetDiscDir(
 0, /* LDN */
 wDioChannel_1, /* DIO 1 */
 DISC_OUTPUT); /* Set to output */

if (nResult)
 printf(“aceSetDiscDir () Error: Code %d\n”, nResult);

/*Set the DIO 2 to an input */
nResult = aceSetDiscDir(
 0, /* LDN */
 wDioChannel_2, /* DIO 2 */
 DISC_INPUT); /* Set to output */

if (nResult)
 printf(“aceSetDiscDir () Error: Code %d\n”, nResult);

Code Example 5. Configuring Discrete lines.

3.2.5.2 Checking Digital I/O line Direction

The direction of a DIO lines can be set for input or output. To retrieve the current
state of the DIO line, the function aceGetDiscDir() can be used. The function will
return either a DISC_OUTPUT (1), DISC_INPUT (0), or a negative number indicating
there was an error in the function call.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

41

S16BIT nResult;
U16BIT wDioChannel_1 = 1;
U16BIT wDioChannel_2 = 2;

/* Get the direction of the DIO 1 – should be output */
nResult = aceGetDiscDir (
 0, /* LDN */
 wDioChannel_1); /* DIO 1 */

if(nResult != DISC_OUTPUT)

 printf(“aceGetDiscDir () Error: Code %d\n”, nResult);
else
 printf(“Discrete is set for and output:\n”);

/* Get the direction of the DIO 2 – should be an input */
nResult = aceGetDiscDir (
 0, /* LDN */
 wDioChannel_2); /* DIO 2 */

if(nResult != DISC_INPUT)

 printf(“aceGetDiscDir () Error: Code %d\n”, nResult);
else
 printf(“Discrete is set for and Input\n”);

Code Example 6. Reading DIO Channel direction

3.2.5.3 Setting Digital I/O Output

After the DIO line has been configured as an output, the user may configure if the DIO
is set DISC_HIGH (1), or DISC_LOW (0) with the function aceSetDiscOut(). By
default the DIO line is initialized to DISC_LOW (0).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

42

S16BIT nResult;
U16BIT wDioChannel_1 = 1;

/*Set the DIO output to HIGH */
nResult = aceSetDiscOut(
 0, /* LDN */
 wDioChannel_1, /* DIO 1 */
 DISC_HIGH); /* Set to output to high value */

if (nResult)
 printf(“aceSetDiscOut () Error: Code %d\n”, nResult);

Code Example 7. Setting DIO Line Output Value.

3.2.5.4 Reading Digital I/O Input

After the DIO line has been configured as an input or output, the user may read if the
DIO is set DISC_HIGH (1), or DISC_LOW (0) with the function aceGetDiscIn() and
aceGetDisOut(). By default the DIO line is initialized to DISC_LOW (0).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

43

S16BIT nResult;
U16BIT wDioChannel_1 = 1;
U16BIT wDioChannel_2 = 2;

/* Read the DIO line value */
nResult = aceGetDiscOut(
 0, /* LDN */
 wDioChannel_1) /* DIO 1 */

if (nResult < 0)
 printf(“aceGetDiscOut () Error: Code %d\n”, nResult);

else
 printf(“DIO 1 is set to a value %d\n”, nResult);

/*Read the DIO line value */
nResult = aceGetDiscIn(
 0, /* LDN */
 wDioChannel_2); /* DIO 2 */

if (nResult < 0)
 printf(“aceGetDiscIn () Error: Code %d\n”, nResult);

else
 printf(“DIO 1 is set to a value %d\n”, nResult);

Code Example 8. Setting DIO Line Output Value.

3.2.5.5 Digital I/O “All” functions

The AceXtreme SDK has two function aceSetDiscAll() and aceGetDiscAll() which
can be used to configure and retrieve all DIO lines within one function call. The DIO
functions calls discussed in the previous sections only allow for the configuration of
the DIOs lines on an individual basis. When necessary the aceGetDiscAll() and
aceSetDiscAll() may be used to configure all available DIOs based on the mask
setting passed into these functions.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

44

S16BIT nResult;
U16BIT wDirection = 0xFF; /* Set DIO 0-7 as output */
U16BIT wLevel = 0x55; /* Set DIO Even as 1, odd as 0 */

/*Set the DIOs to an output and put even DIOs to high */
nResult = aceSetDiscAll(
 0, /* LDN */
 wDirection, /* DIO direction mask */
 wLevel); /* DIO output levels */

if (nResult)
 printf(“aceSetDiscAll() Error: Code %d\n”, nResult);

/* Get the direction and levels of the DIOs */
nResult = aceGetDiscAll (
 0, /* LDN */
 &wDirection, /* DIO direction mask */
 &wLevel); /* DIO output levels */

if(nResult < 0)

 printf(“aceGetDiscAll () Error: Code %d\n”, nResult);

Code Example 9. Using aceSetDiscAll() and aceGetDiscAll().

3.2.5.6 DIO Time Tag Recording.

With the BU-67210 Multi-Function AceXtreme card, the time stamp of when a DIO
value changes are recorded to a buffer on the card. This feature is currently unique to
the BU-67210 card under Windows.

The DIO Time Tag recording feature will store a 48-Bit time stamp based on the
configuration specified with acexDioTtCfg(). Each time tag entry stored on the buffer
is 64-bits (8 Bytes) wide. The upper 16-bits of each entry correspond to the individual
discrete signal’s rising or falling events, similar to the least significant bit position
described in the configuration structure member.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

45

S16BIT nResult;
DIO_TT_CFG sDIOTtCFG; /* Set DIO 0-7 as output */

/* User Defined callback function */
Void _DECL DiottIsr(S16BIT DevNum, U32BIT u32Intsts)
{
 /* ISR implementation User Defined callback */
 printf(“An Interrupt has occurred \n”);
}

/* Use Dio 1-8, rising & fall edge */
sDioTtCfg.u32Dio = 0x0000FFFF;

/* Clock Source */
sDioTtCfg.u32TtCfg = TT_RES0_100NS | TT_RO_48BIT;

/* Clock Source */
sDioTtCfg.u32EntCnt = 0;

/*Set the DIOs to an output and put even DIOs to high */
nResult = acexDioTtCfg(
 0, /* LDN */
 &sDioTtcfg, /* DIO direction mask */
 DiottISr); /* DIO output levels */

if (nResult)
 printf(“acexDioTtCfg () Error: Code %d\n”, nResult);

Code Example 10. Configuring DIO time stamp and ISR.

To turn on or off the time tag recording, the function acexDioTtCtl() is used. This
function can all be used to reset the timer to zero. To retrieve the stored time tags,
the function acexDioTtRead() is used.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

46

S16BIT nResult;
U8BIT *pu8Data;
U32BIT u32BytesRead = DIO_TT_BUF_LENl

/* Reset the DIO time tag to zero */
nResult = acexDioTtCtl(
 0, /* LDN */
 TT_CTL_RESET); /* Reset DIO Time stamp to zero */

if (nResult)
 printf(“acexDioTtCtl () Error: Code %d\n”, nResult);

/* Start DIO time tag recording */
nResult = acexDioTtCtl(
 0, /* LDN */
 TT_CTL_START); /* Start the DIO time stamping */

if (nResult)
 printf(“acexDioTtCtl () Error: Code %d\n”, nResult);

/* Read stored DIO time tag */
nResult = acexDioTtRead(
 0, /* LDN */
 pu8Data, /* Buffer to store time stamps */
 & u32BytesRead); /* Number of bytes to read */

if (nResult)
 printf(“acexDioTtRead () Error: Code %d\n”, nResult);

Code Example 11. Starting Time Tag recording and reading Time tags.

3.2.6 Avionics I/O

DDC’s AceXtreme boards include support for Avionic Level Discrete I/O channels that
can be individually programmed as inputs or outputs. The number of Avionics
Discrete I/O (AIO) pins on the AceXtreme device varies for each device and it is
recommend referring to the device’s hardware manual for more information on the
digital I/O configuration of a specific device.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

47

The Avionics Discrete I/O can be used for a variety of applications including triggering
events, indicating status, or general purpose use. For DDC’s AceXtreme Multi-IO
boards, the Avionics Discrete I/O may be accessed from either the AceXtreme SDK
(BU-69092Sx) or the ARINC 429 Multi-IO SDK (DD-42992Sx).

3.2.6.1 Configuring Avionics Discrete I/O

Each Avionics Discrete I/O line can be set for input or output via the aceSetAioDir()
function. The function requires the LDN, the Avionic Discrete line to modify and the
direction to set the discrete line. The direction is configured by passing into the
function either AVIONIC_OUTPUT (1) for an output or AVIONIC_INPUT (0) for an
input.

S16BIT nResult;
U16BIT wAioChannel_1 = 1;
U16BIT wAioChannel_2 = 2;

/*Set the AIO 1 to an output */
nResult = aceSetAioDir(
 0, /* LDN */
 wAioChannel_1, /* AIO 1 */
 AVIONIC_OUTPUT); /* Set to output */

if (nResult)
 printf(“aceSetAioDir () Error: Code %d\n”, nResult);

/*Set the AIO 2 to an input */
nResult = aceSetAioDir (
 0, /* LDN */
 wAioChannel_2, /* AIO 2 */
 AVIONIC_INPUT); /* Set to output */

if (nResult)
 printf(“aceSetAioDir () Error: Code %d\n”, nResult);

Code Example 12. Configuring Avionic Discrete lines.

3.2.6.2 Checking Avionic I/O line Direction

The direction of a AIO lines can be set for input or output. To retrieve the current state
of the AIO line, the function aceGetAioDir() can be used. The function will return
either a AVIONIC_OUTPUT (1), AVIONIC_INPUT (0), or a negative number
indicating there was an error in the function call.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

48

S16BIT nResult;
U16BIT wAioChannel_1 = 1;
U16BIT wAioChannel_2 = 2;

/* Get the direction of the AIO 1 – should be output */
nResult = aceGetAioDir (
 0, /* LDN */
 wAioChannel_1); /* AIO 1 */

if(nResult != AVIONIC_OUTPUT)

 printf(“aceGetAioDir() Error: Code %d\n”, nResult);
else
 printf(“Avionic I\O is set for and output:\n”);

/* Get the direction of the AIO 2 – should be an input */
nResult = aceGetAioDir (
 0, /* LDN */
 wAioChannel_2); /* AIO 2 */

if(nResult != AVIONIC_INPUT)

 printf(“aceGetAioDir() Error: Code %d\n”, nResult);
else
 printf(“Avionic I\O is set for and Input\n”);

Code Example 13. Reading AIO Channel direction

3.2.6.3 Setting Digital I/O Output

After the AIO line has been configured as an output, the user may configure if the AIO
is set AVIONIC_HIGH (1), or AVIONIC_LOW (0) with the function aceSetAioOut().
By default the AIO line is initialized to AVIONIC_LOW (0).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

49

S16BIT nResult;
U16BIT wAioChannel_1 = 1;

/*Set the AIO output to HIGH */
nResult = aceSetAioOut(
 0, /* LDN */
 wAioChannel_1, /* AIO 1 */
 AVIONIC_HIGH); /* Set to output to high value */

if (nResult)
 printf(“aceSetAioOut () Error: Code %d\n”, nResult);

Code Example 14. Setting AIO Line Output Value.

3.2.6.4 Reading Digital IO Input

After the AIO line has been configured as an input or output, the user may read if the
AIO is set AVIONIC_HIGH (1), or AVIONIC_LOW (0) with the function aceGetAioIn()
and aceGetAioOut(). By default the AIO line is initialized to AVIONIC_LOW (0).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

50

S16BIT nResult;
U16BIT wAioChannel_1 = 1;
U16BIT wAioChannel_2 = 2;

/* Read the AIO line value */
nResult = aceGetAioOut(
 0, /* LDN */
 wAioChannel_1) /* AIO 1 */

if (nResult < 0)
 printf(“aceGetAioOut () Error: Code %d\n”, nResult);

else
 printf(“AIO 1 is set to a value %d\n”, nResult);

/*Read the AIO line value */
nResult = aceGetAioIn(
 0, /* LDN */
 wAioChannel_2); /* AIO 2 */

if (nResult < 0)
 printf(“aceGetAioIn () Error: Code %d\n”, nResult);

else
 printf(“AIO 1 is set to a value %d\n”, nResult);

Code Example 15. Setting AIO Line Output Value.

3.2.6.5 Digital I/O “All” functions

The AceXtreme SDK has two function aceSetAioAll() and aceGetAioAll() which can
be used to configure and retrieve all AIO lines within one function call. The AIO
functions calls discussed in the previous sections only allow for the configuration of
the AIOs lines on an individual basis. When necessary the aceGetAioAll() and
aceSetAioAll() may be used to configure all available AIOs based on the mask
setting passed into these functions.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

51

S16BIT nResult;
U16BIT wDirection = 0xFF; /* Set AIO 0-7 as output */
U16BIT wLevel = 0x55; /* Set AIO Even as 1, odd as 0 */

/*Set the AIOs to an output and put even AIOs to high */
nResult = aceSetAioAll(
 0, /* LDN */
 wDirection, /* AIO direction mask */
 wLevel); /* AIO output levels */

if (nResult)
 printf(“aceSetAioAll() Error: Code %d\n”, nResult);

/* Get the direction and levels of the AIOs */
nResult = aceGetAioAll (
 0, /* LDN */
 &wDirection, /* AIO direction mask */
 &wLevel); /* AIO output levels */

if(nResult < 0)

 printf(“aceGetAioAll () Error: Code %d\n”, nResult);

Code Example 16. Using aceSetAioAll() and aceGetAioAll().

3.2.7 Triggers

Each 1553 channel can have up to 18 programmable triggers each one uniquely
represented by an ID, shown in Table 16.

Triggers are separated into two types: Time/Message (TMT) and General Purpose
(GPT). TMT triggers provide message counting and time-related functionality, while
GPT triggers are used to identify data matching patterns and synchronize with
external equipment. Trigger functionality requires running the 1553 monitor
concurrently (see section 3.3.2 for more information on the setup and usage of the
Bus Monitor).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

52

Table 16. Trigger IDs
 Name / Symbol Type

ACEX_TRG_ID_TMT1
Time/Message Trigger

ACEX_TRG_ID_TMT2

ACEX_TRG_ID_GPT1

General Purpose Trigger

ACEX_TRG_ID_GPT2

ACEX_TRG_ID_GPT3

ACEX_TRG_ID_GPT4

ACEX_TRG_ID_GPT5

ACEX_TRG_ID_GPT6

ACEX_TRG_ID_GPT7

ACEX_TRG_ID_GPT8

ACEX_TRG_ID_GPT9

ACEX_TRG_ID_GPT10

ACEX_TRG_ID_GPT11

ACEX_TRG_ID_GPT12

ACEX_TRG_ID_GPT13

ACEX_TRG_ID_GPT14

ACEX_TRG_ID_GPT15

ACEX_TRG_ID_GPT16

Triggers are setup using the following steps, which are to be described in further detail
in the rest of this section:

1. Trigger is configured for its Input (that will determine its Arm state) and other
operating conditions.

2. The trigger is enabled.
3. Desired Event(s) are enabled.
4. Desired Event(s) are linked to the trigger.
5. (Optional) External I/O signals and/or interrupts are configured to operate

with the trigger.

3.2.7.1 Trigger Setup

Figure 10 shows the various states a trigger may be in during programming and
operation.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

53

Armed

Enabled

Fired

Run
Events

Idle/
Disabled

Trigger Input
becomes active*

If Events
available

acexTRGDisabled(),
or acexTRGReset()

Trigger operating
conditions satisfied

acexTRGConfigure(),
and acexTRGEnable() * For IN_START trigger input,

the transition to “Armed” is
immediate; there is no wait.

Wait to Fire

Idle/
Disabled

Any State

Trigger
Active Wait for Clear

Trigger Cleared

If No Events

Events
Completed

Wait for Input*

Figure 10. Trigger State Diagram

Triggers are initially configured with the acexTRGConfigure() function. The trigger to
be configured is specified by its ID from Table 16. The configuration information is
provided by the user via the ACEX_TRG_CONFIG “C” code structure.

See the section on “Structures” in the AceXtreme® C SDK Reference Manual (MN-
69092SX-003) for detailed information.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

54

typedef struct _ACEX_TRG_CONFIG_TMT
{
 U8BIT u8InTmtTrg;
 BOOLEAN bSet;
 BOOLEAN bTimeTrg;
 BOOLEAN bInUs;
 BOOLEAN bClrAuto;
 U16BIT u16TMTCount;
} ACEX_TRG_CONFIG_TMT;

Code Example 17. ACEX_TRG_CONFIG_TMT Structure

typedef struct _ACEX_TRG_CONFIG_GPT
{
 U8BIT u8InGptTrg;
 BOOLEAN bSet;
 BOOLEAN bClrNotMatched;
 BOOLEAN bClrAuto;
 BOOLEAN bClrNewMsg;
 BOOLEAN bBcCmdEn;
 BOOLEAN bBcDataEn;
 BOOLEAN bRtStatusEn;
 BOOLEAN bRtDataEn;
 BOOLEAN bBswEn;
 BOOLEAN bBusAEn;
 BOOLEAN bBusBEn;
 U8BIT u8DataCnt;
 U8BIT u8TrgCnt;
 U16BIT u16Mask;
 U16BIT u16Data;
} ACEX_TRG_CONFIG_GPT;

Code Example 18. ACEX_TRG_CONFIG_GPT Structure

In both the ACEX_TRG_CONFIG_TMT and ACEX_TRG_CONFIG_GPT structures,
the first entry, u8InTmtTrg or u8InGptTrg, is a value representing the input for the
trigger. A trigger’s input determines how it will be armed. The available inputs are
listed in Table 17.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

55

The primary use of a configurable trigger input is to allow the triggers to be cascaded
together, i.e. the output of one trigger will arm the next trigger.

Note: Each trigger may only have one input.

Table 17. Trigger Inputs (u8InTmtTrg or u8InGptTrg)
 Name / Symbol Description

ACEX_TRG_IN_DISABLE Trigger will not arm.

ACEX_TRG_IN_START Trigger will be armed immediately by software when the
trigger is enabled.

ACEX_TRG_IN_DISC

This is only valid for GPT. The GPT will be armed by its
respective Discrete I/O pin (DIO) transitioning from 0 to 1.
When used for triggers, DIO_n is hard-wired to
ACEX_TRG_ID_GPTn, where n = 1, 2, …
Note 1: The use of DIO pins is limited to the number
available on any given DDC hardware.
Note 2: DIO pins are also shared with Trigger outputs and
input/output for Intermessage Routines. Hence, not all DIO
pins may be available for trigger input use.

ACEX_TRG_ID_TMT1 Trigger will be armed by the specified Time Message
Trigger’s output.
Note: The user must not configure a trigger to be its own
input. ACEX_TRG_ID_TMT2

ACEX_TRG_ID_GPT1

Trigger will be armed by the specified General Purpose
Trigger’s output.
Note: The user must not configure a trigger to be its own
input.

ACEX_TRG_ID_GPT2

ACEX_TRG_ID_GPT3

ACEX_TRG_ID_GPT4

ACEX_TRG_ID_GPT5

ACEX_TRG_ID_GPT6

ACEX_TRG_ID_GPT7

ACEX_TRG_ID_GPT8

ACEX_TRG_ID_GPT9

ACEX_TRG_ID_GPT10

ACEX_TRG_ID_GPT11

ACEX_TRG_ID_GPT12

ACEX_TRG_ID_GPT13

ACEX_TRG_ID_GPT14

ACEX_TRG_ID_GPT15

ACEX_TRG_ID_GPT16

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

56

The remaining entries in each of the ACEX_TRG_CONFIG_TMT and
ACEX_TRG_CONFIG_GPT structures define the operating conditions of the trigger,
i.e. the conditions that will cause it to fire (i.e. trigger).

Once configured, each trigger in a 1553 channel that is to be used must be enabled
by calling the function acexTRGEnable(). The trigger is specified by its ID from Table
16. After this, the trigger will be armed according to its input configuration (see Table
17).

Once a trigger is armed, it will fire (i.e. trigger and drives its output signal) when its
operating conditions are met. This output signal may be used to drive other triggers,
Intermessage Routines (see section 3.3.1.9), or a Discrete I/O pin.

Conversely, calling the function acexTRGDisable() will disable the trigger from further
use in the given 1553 channel, and clears its output state.

S16BIT nResult;
ACEX_TRG_CONFIG sTrgConfig;

sTrgConfig.u.sTmt.u8InTmtTrg = ACEX_TRG_IN_START;
sTrgConfig.u.sTmt.bSet = 0; /* do not set trigger */
sTrgConfig.u.sTmt.bTimeTrg = 1; /* choose time trigger */
sTrgConfig.u.sTmt.bInUs = 0; /* choose ms */
sTrgConfig.u.sTmt.bClrAuto = 0; /* do not clr */
sTrgConfig.u.sTmt.u16TMTCount = 1000; /* 1000 ms */

/* Configure Trigger */
nResult = acexTRGConfigure(
 0, /* LDN */
 ACEX_TRG_ID_TMT1, /* Trigger ID */
 sTrgConfig); /* Trigger config */

if(nResult)
 printf(“acexTRGConfigure Error: Code %d\n”,nResult);

/* Enable Trigger */
nResult = acexTRGEnable(0, /* LDN */
 ACEX_TRG_ID_TMT1); /* Trigger ID */
if(nResult)
 printf(“acexTRGEnable Error: Code %d\n”,nResult);

Code Example 19. Selecting an Event

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

57

For each channel, all the triggers are reset together by the function acexTRGReset().
This resets the trigger configurations, event selections, the trigger enabled/disabled
states, and clears the interrupt status and trigger statuses.

3.2.7.2 Event Setup

When a trigger fires, it may be configured to drive other triggers, Intermessage
Routines, or a Discrete I/O pin. Additionally, for more flexibility, the trigger may also be
programmed to generate up to 12 types of Events, listed in Table 18. To generate
more than one event, the values can be logically ORed together when during
configuration.

Table 18. Trigger Events
Name / Symbol Description

ACEX_TRG_EVENT_MTI_MARK_A Marks a position in the MT capture file.

ACEX_TRG_EVENT_MTI_MARK_B Marks a position in the MT capture file.

ACEX_TRG_EVENT_MTI_MARK_C Marks a position in the MT capture file.

ACEX_TRG_EVENT_MTI_MARK_D Marks a position in the MT capture file.

ACEX_TRG_EVENT_MON_START Starts MT recording. The MT must previously be
configured to wait for a trigger.

ACEX_TRG_EVENT_MON_STOP Stops MT recording.

ACEX_TRG_EVENT_REPLAY_START Starts BC Replay. BC Replay must previously be
configured to wait for a trigger.

ACEX_TRG_EVENT_REPLAY_STOP Stops BC Replay.

ACEX_TRG_EVENT_BC_IMR_WAIT Signals the waiting BC to resume operation. The
ACEX_BC_IMR_WAIT_FOR_INPUT_TRIG intermessage
routine must first be used to halt the BC.

ACEX_TRG_EVENT_RT_IMR_WAIT Signals the waiting RT to resume operation. The
ACEX_MRT_IMR_WAIT_FOR_INPUT_TRIG
intermessage routine must first be used to halt the RT.

ACEX_TRG_EVENT_TIMETAG_LATCH Captures the current time tag.

ACEX_TRG_EVENT_INTERRUPT Asserts the ACE_IMR2_BIT_TRIGGER interrupt, causing
the user ISR to be called.

Each event that is to be used in a given 1553 channel must be enabled by calling the
function acexTRGEventEnable(). The event(s) are specified by ORing their values
from Table 18.

Conversely, calling the function acexTRGEventDisable() will disable the event(s)
from further use in the given 1553 channel.

Finally, selected events are linked to a trigger ID by calling the function
acexTRGEventSelect().

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

58

S16BIT nResult;

/* Enable Events */
nResult = acexTRGEventEnable(
 0, /* LDN */
 ACEX_TRG_EVENT_MON_STOP); /* Events */
if(nResult)
 printf(“acexTRGEnable Error: Code %d\n”, nResult);

/* Trigger Event Select */
nResult = acexTRGEventSelect(
 0, /* LDN */
 ACEX_TRG_ID_TMT1, /* Trigger ID */
 ACEX_TRG_EVENT_MON_STOP, /* Events */
 ACEX_TRG_EVENT_TRG); /* Link to Trigger */
if(nResult)
 printf(“acexTRGEventSelect Error: Code %d\n”, nResult);

Code Example 20. Event Enable and Select

3.2.7.1 External Hardware Interactions

The General Purpose Triggers may be configured to interact with external devices via
any Discrete or Avionics I/O pins (DIO or AIO) available on the 1553 card. The use of
DIO as input to GPT was described previously in Table 17.

DIO may also be configured as the output of GPT. DIO_n is hard-wired to
ACEX_TRG_ID_GPTn, where n = 1, 2, …

Note 1: The use of DIO pins is limited to the number available on any given DDC
hardware.

Note 2: DIO pins are also shared with Intermessage Routines. Hence, not all DIO
pins may be available for trigger use.

The function acexSetDiscConfigure() enables the specified DIO to be used as the
external interface for both triggers and intermessage routines. The last parameter of
the function is the ACEX_DISC_CONFIG structure. It contains parameters that affect
the operation of the DIO.

See the section on “Structures” in the AceXtreme® C SDK Reference Manual (MN-
69092SX-003) for detailed information.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

59

typedef struct _ACEX_DISC_CONFIG
{
 U16BIT u16Polarity;
 U16BIT u16Control;
 U16BIT u16SelTrgImr;
 BOOLEAN bSSFDisable;
} ACEX_DISC_CONFIG;

Code Example 21. ACEX_DISC_CONFIG Structure

S16BIT nResult;
S16BIT discrete = DIO_1; /* DIO_1 connects GPT1 */
ACEX_DISC_CONFIG sDiscConfig;

 sDiscConfig.u16Polarity = ACEX_DISC_ACTIVE_HI;
 sDiscConfig.u16Control = ACEX_DISC_TRGIMR_CTRL;
 sDiscConfig.u16SelTrgImr = ACEX_DISC_SEL_TRG;
 sDiscConfig.bSSFDisable = TRUE;

/* Set the Discrete Configuration. */
nResult = acexSetDiscConfigure(0, /* LDN */
 discrete, /* Discrete I/O */
 SDiscConfig, /* Disc Config */
if(nResult)
 printf(“acexSetDiscConfigure Error: Code %d\n”, nResult);

Code Example 22. Configure a Discrete I/O

For the second entry of the ACEX_DISC_CONFIG structure, u16Control, the value
ACEX_DISC_TRGIMR_CTRL allows the GPT (or IMR, in the case of intermessage
routines) to drive the DIO output. However, if the value ACEX_DISC_SW_CTRL is
set, then the host may drive the DIO output by using the Discrete I/O API –
aceSetDiscDir(), aceSetDiscAll(), aceSetDiscOut().

All previous Discrete I/O configurations (for both triggers and intermessage routines)
in a 1553 channel can be cleared together by calling the function
acexClrDiscConfigure().

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

60

3.2.7.2 Host Interactions

Any trigger with the ACEX_TRG_EVENT_INTERRUPT event enabled will be able to
interrupt the host via the ACE_IMR2_BIT_TRIGGER (interrupt mask/status bit) user-
level interrupt. Please see section 3.2.3 for information on configuring interrupt events
and callback routines.

When a trigger interrupt occurs, two registers contain information that is useful to the
host. The Trigger Status Block contains the current state of every trigger ID and
event in the 1553 channel. The Trigger Interrupt Status Block shows which trigger
ID has interrupted the host since the last interrupt service. The two registers are saved
into a buffer each time there is an interrupt. The buffer operates as a circular buffer
and has the capacity to save up to 100 interrupt events.

Table 19. Trigger Status Block
Bit Description

31:29 Reserved

28 Trigger Status TT Latch

27 Trigger Status RT IMR Wait

26 Trigger Status BC IMR Wait

25 Trigger Status Replay Stop

24 Trigger Status Replay Start

23 Trigger Status MT Stop

22 Trigger Status MT Start

21 Trigger Status MT Marker D

20 Trigger Status MT Marker C

19 Trigger Status MT Marker B

18 Trigger Status MT Marker A

 17:2 General Purpose Trigger Status [16:1]

1:0 Time/Message Trigger Status [2:1]

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

61

Table 20. Trigger Interrupt Status Block
Bit Description

31:18 Reserved

17:2 General Purpose Trigger Interrupt [16:1]

1:0 Time/Message Trigger Interrupt [2:1]

The host will retrieve the values of the two registers from the buffer by calling the
function acexTRGGetStatus().

S16BIT nResult;
U32BIT u32TrgStatus = 0;
U32BIT u32IrqStatus = 0;

/* Get trigger and IRQ status. */
nResult = acexTRGGetStatus(0, /* LDN */
 &u32TrgStatus, /* Trigger status */
 &u32IrqStatus, /* IRQ Status */
if(nResult)
 printf(“acexTRGGetStatus Error: Code %d\n”,nResult);

Code Example 23. Get Trigger and Interrupt Status

The ACEX_TRG_EVENT_TIMETAG_LATCH event causes the 64-bit hardware time
tag to be latched. The host reads the last latched value by calling the function
acexTRGGetTimeTag().

S16BIT nResult;
U64BIT u64TimeTag = 0;

/* Get Time tag value. */
nResult = acexTRGGetTimeTag(0, /* LDN */
 &u64TimeTag); /* 64-bit Time Tag */
if(nResult)
 printf(“acexTRGGetTimeTag Error: Code %d\n”,nResult);

Code Example 24. Get Latched Time Tag

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

62

3.3 1553 Modes of Operation

Based on the user-configurable Mode of Operation (configured via aceInitialize()), the
AceXtreme C SDK defines API calls to facilitate operation for that specific mode.
Each mode has a finite list of functions used to configure, read, and write data to the
DDC hardware device.

It is expected that all channels are initialized (see Section 3.1) and assigned a Logical
Device Number (LDN) before proceeding.

3.3.1 Bus Controller (ACE_MODE_BC)

The AceXtreme C SDK’s Bus Controller mode provides a high degree of flexibility for
implementing major and minor frame scheduling and the capability to insert
asynchronous messages in the middle or end of a frame. It separates 1553 message
data from control/status data for the purpose of implementing advanced buffering and
performing bulk data transfers; and implements message retry schemes.

It also includes the capability for automatic bus channel switchover for failed
messages as well as for reporting various events to the user host processor via a
General Purpose Queue and specific BC events.

The AceXtreme devices support a combined BC and MT-I mode which allows the
user to run both a Bus Controller and an IRIG-106 Chapter 10 monitor on the same
channel. To use the combined mode, ACE_MODE_BCMTI must be passed into
aceInitialize().

3.3.1.1 Configuration

The AceXtreme C SDK’s Bus Controller has numerous configuration options that
should be addressed before any data transfers are attempted. Configuration is
accomplished via the aceBCConfigure() function and is typically called after
aceInitialize().

The following options can be “logically OR’ed” into the second parameter of
aceBCConfigure().

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

63

Table 21. BC Configuration Options
Options Description

ACE_BC_ASYNC_HMODE “High-Priority” Asynchronous Messaging Enabled

ACE_BC_ASYNC_LMODE “Low-Priority” Asynchronous Messaging Enabled

ACE_BC_ASYNC_BOTH “Both” Asynchronous Messages modes enabled

Table 22. BC Configuration Options for AceXtreme Hardware
Options Description

ACEX_BC_GPQ_SZ_64, General Purpose Queue size of 64

ACEX_BC_GPQ_SZ_256, General Purpose Queue size of 256

ACEX_BC_ASYNCQ_SZ_LP_32, Asynchronous Low Priority Queue size 32

ACEX_BC_ASYNCQ_SZ_LP_64, Asynchronous Low Priority Queue size 64

ACEX_BC_ASYNCQ_SZ_LP_128, Asynchronous Low Priority Queue size 128

ACEX_BC_ASYNCQ_SZ_LP_256, Asynchronous Low Priority Queue size 256

ACEX_BC_ASYNCQ_SZ_LP_512 Asynchronous Low Priority Queue size 512

ACEX_BC_ASYNCQ_SZ_HP_32, Asynchronous High Priority Queue size 32

ACEX_BC_ASYNCQ_SZ_HP_64, Asynchronous High Priority Queue size 64

ACEX_BC_ASYNCQ_SZ_HP_128, Asynchronous High Priority Queue size 128

ACEX_BC_ASYNCQ_SZ_HP_256, Asynchronous High Priority Queue size 256

ACEX_BC_ASYNCQ_SZ_HP_512 Asynchronous High Priority Queue size 512

ACEX_BC_RESP_GAP_CHECK When specified configures a 4µsecond minimum RT response
check. If the RT responds earlier than 4 µs, bit 3 of the block status
word will be set to ‘1’.

ACEX_BC_BCST_STATUS_CHECK When this option is specified, the BC will check for status for all
broadcast commands. If the status is received before timing out, a
word count error will be logged in the block status word.

ACEX_BC_SIMUL_BUS_TX Simultaneous Bus A and B transmissions for superseding
commands.

ACEX_BC_INTERMSG_GAP_TIME Gap time between two messages (See section 3.3.1.2.2.1.2)

ACEX_BC_TO_ACTIVATE This Option allows a BC to become active after the DBC switching
process. Multiple BCs can be configured, however only one can be
activated at a time.

The option ACEX_BC_INTERMSG_GAP_TIME gives the user a better accuracy of
the gap between messages. Once enabled, all messages will use the gap time,
otherwise the time between messages will be measured as time to the next message.
Time to the next message is measured from the beginning of the current message to
the beginning of the next message.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

64

S16BIT nResult;

/* Enable HP Asynchronous Messaging */
nResult = aceBCConfigure(
 0, /* LDN */
 ACE_BC_ASYNC_HMODE); /* Enable HP Async. Messaging */

if(nResult)
 printf(“aceBCConfigure() Error: Code %d\n”, nResult);

Code Example 25. Configuring the BC to Support “High-Priority”
Asynchronous Messaging

3.3.1.2 Creating BC Objects

As discussed in Section 3.2.1, Bus Controller Mode defines 4 OUID object types: Data
Blocks, Message Blocks, Opcodes, and Frames. Each type has a unique operation
and a specific purpose, though they all have a specific relation to each other.

3.3.1.2.1 BC Data Blocks

BC Data Blocks are used to store MIL-STD-1553 data words (up to 32 words). Once
created, a BC Data Block can be independently read or written to. Typically, a BC
Data Block is linked to a BC Message to receive or transmit 1553 data. When a BC
Message is sent on the bus, the BC Sequence Engine will place data into or pull data
from the linked BC Data Block.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

65

Figure 11. Relationship of BC Data Blocks

BC Data Blocks reside in DDC hardware memory, so they need to be created to
guarantee available space. Once created, they can be linked to one or more BC
Message Blocks (see 3.3.1.2.2). To create a BC Data Block, use the
aceBCDataBlkCreate() function.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

66

S16BIT nResult;
#define DBLK1 0x0001
U16BIT wBuffer[32] =
{ 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444,
 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444,
 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444,
 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444 };

/* Create a BC Data Block */
nResult = aceBCDataBlkCreate(
 0, /* LDN */
 DBLK1, /* Data Clock OUID to assign */
 32, /* Data Block Size */
 wBuffer, /* Initial Data */
 32); /* Size of Initial Data */

if(nResult)
 printf(“aceBCDataBlkCreate Error: Code %d\n”, nResult);

Code Example 26. Creating and Initializing a BC Data Block

3.3.1.2.2 BC Message Blocks

BC Messages Blocks are used to store control and status information about a
particular MIL-STD-1553 message. Items such as RT address, RT subaddress, Word
Count and others are stored in the BC Message Block to be executed at some point
on the 1553 bus.

The AceXtreme C SDK defines two categories of Messages: Synchronous and
Asynchronous.

Note: The Message Block does not hold the 1553 data words. Each Message
Block should assign the OUID of the desired pre-created BC Data Block
Object to hold the associated data words.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

67

Figure 12. Relationship of BC Message Blocks

3.3.1.2.2.1 BC Message Timing

3.3.1.2.2.1.1 BC Time to Next Message

The BC Message Block includes a message timing parameter, which defines the
delay time to run the next message. All DDC Hardware supports the Time-To-Next-
Message option. This is a delay value calculated from Mid-Parity crossing of the first
Command Word crossing to the Mid-Parity crossing of the next Messages Command
word (see Figure 13).

This interval is limited to 7us and can be inaccurate based on the RT Status response
delay.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

68

Figure 13. Time To Next Message

3.3.1.2.2.1.2 BC inter-message gap time.

DDC’s Multi-Function AceXtreme hardware has the capability of setting the time
between messages as either gap time or the time to next message. Inter-Message
Gap time is measured from the end of the current message to the beginning of the
next message (see Figure 14). The major difference between these two options is the
Time to next message field must take into account the RT’s response time and the
BC’s response timeout value. Because of these two dependences from the RT the
time to next message field is not as accurate as the Gap time option. To use Gap
Time, the parameter ACEX_BC_INTERMSG_GAP_TIME must be passed into
aceBCConfigure(). Doing so, will configure the wMsgGapTime parameter specified
in the BC message create functions (aceBCMsgCreateXXXX()) to be Gap time and
no Time to next message. This is a global setting for all messages.

To have a determinate time interval between messages, the new Multi-Function
AceXtreme Architecture allows the user to define this gap time. The inter-message
gap time is programmable between 3.5 μseconds and 32,000 μseconds with a
resolution of 0.5 μseconds.

Figure 14. Inter-message Gap Time

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

69

3.3.1.2.2.2 Synchronous Messages

Synchronous Messages are 1553 messages that will be placed into a Minor or Major
Frame (Section 3.3.1.3) for the purpose of being repeated at the scheduled frame
rate. For information on sending and receiving Synchronous Messages, see Section
3.3.1.4.2.

The desired 1553 Message Type will determine what API function is used to create
the Synchronous Message Block. A Message Block should be created for each
unique 1553 Message to be sent on the bus.

Table 23. Synchronous Message Block Type Create Functions
Desired Message Type Message Block Create Function

BC to RT Message aceBCMsgCreateBCtoRT()

RT to BC Message aceBCMsgCreateRTtoBC()

RT to RT Message aceBCMsgCreateRTtoRT()

Mode Code Command aceBCMsgCreateMode()

BC Broadcast (BC to ALL) aceBCMsgCreateBcst()

RT Broadcast (RT to ALL) aceBCMsgCreateBcstRTtoRT()

Mode Code Broadcast aceBCMsgCreateBcstMode()

S16BIT nResult;
#define MSG1 0x0001
#define DBLK1 0x0001

/* Create message block */
nResult = aceBCMsgCreateBCtoRT(
 0, /* Device number */
 MSG1, /* Message ID to create */
 DBLK1, /* Message will use this data block */
 1, /* RT address */
 1, /* RT subaddress */
 10, /* Word count */
 0, /* Next Message Time (TTNM or IMG) */
 ACE_BCCTRL_CHL_A); /* use chl A options */

if(nResult)
 printf(“aceBCMsgCreateBCtoRT Error: Code %d\n”, nResult);

Code Example 27. Creating a BC to RT Synchronous Message Block

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

70

3.3.1.2.2.2.1 Synchronous Message Options

The following options can be “logically OR’ed” into the last parameter of any
Synchronous Message Block Create (aceBCMsgCreateXXX) function.

Table 24. Synchronous Message Options
Message Option Description (if enabled)

ACE_BCCTRL_1553A
Verifies the validity of the RT response in
accordance with MIL-STD-1553A, as opposed to MIL-STD-1553B (default).

ACE_BCCTRL_EOM_IRQ
After this message executes on the 1553 bus, a ACE_IMR1_BC_MSG_EOM
device Interrupt Event will be generated. See Section 3.2.3 on how to capture
device interrupt events.

ACE_BCCTRL_BCST_MSK
The value of the Broadcast Command Received bit in the received RT Status Word
becomes "don't care” in terms of affecting the occurrence of a "Status Set"
condition.

ACE_BCCTRL_SELFTST Inhibits the 1553 transmitter while executing this message for the purpose of offline
Self-Test.

ACE_BCCTRL_CHL_A This message will be sent on Bus A (Primary)

ACE_BCCTRL_CHL_B This message will be sent on Bus B (Secondary)

ACE_BCCTRL_RETRY_ENA This message will be retried (per the BC Retry policy) as the result of a response
timeout or format error condition.

ACE_BCCTRL_RES_MSK The value of the 3 Reserved bits in the received RT Status Word becomes "don't
care” in terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_DBC_MSK
This parameter is used to disable the Dynamic Bus Controller interrupt. When the
dynamic Bus Controller bit is set in a status word and this masked is used, an
interrupt will not be generated.

ACE_BCCTRL_INSTR_MSK
This parameter is used to disable the instrumentation interrupt. When the
instrumentation bit is set in a status word and this masked is used, an interrupt will
not be generated.

ACE_BCCTRL_TFLG_MSK The value of the Terminal Flag bit in the received RT Status Word becomes "don't
care” in terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_SSFLG_MSK The value of the Subsystem Flag bit in the received RT Status Word becomes
"don't care” in terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_SSBSY_MSK The value of the Busy bit in the received RT Status Word becomes "don't care” in
terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_SREQ_MSK The value of the Service Request bit in the received RT Status Word becomes
"don't care” in terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_ME_MSK The value of the Message Error bit in the received RT Status Word becomes "don't
care” in terms of affecting the occurrence of a "Status Set" condition.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

71

3.3.1.2.2.3 Asynchronous Messages

Asynchronous Messages are 1553 messages that are not periodic and only need to
be sent on the 1553 bus a finite amount of times. This is accomplished by inserting
these messages into currently executing synchronous Minor Frame. The AceXtreme
C SDK defines two types of Asynchronous Messages; Low-Priority and High-Priority.
The method to create the Message Blocks is the same, regardless of type. For
information on sending and receiving Asynchronous Messages, see Section 3.3.1.4.2.

Note: Make sure Asynchronous Messaging is enabled before creating any
Message Blocks (See 3.3.1.1)

Note: Asynchronous Messaging is designed to work in tandem with Synchronous
Frames. It is not recommended to use Asynchronous Messaging as the sole
method of sending 1553 BC Traffic.

The desired 1553 Message Type will determine what API function is used to create
the Asynchronous Message Block. A Message Block should be created for each
unique 1553 Message to be sent on the bus.

Table 25. Asynchronous Message Block Type Create

Functions
Desired Message Type Message Block Create Function

BC to RT Message aceBCAsyncMsgCreateBCtoRT()

RT to BC Message aceBCAsyncMsgCreateRTtoBC()

RT to RT Message aceBCAsyncMsgCreateRTtoRT()

Mode Code Command aceBCAsyncMsgCreateMode()

BC Broadcast (BC to ALL) aceBCAsyncMsgCreateBcst()

RT Broadcast (RT to ALL) aceBCAsyncMsgCreateBcstRTtoRT()

Mode Code Broadcast aceBCAsyncMsgCreateBcstMode()

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

72

S16BIT nResult;
#define MSG1 0x0001
#define DBLK1 0x0001
U16BIT wBuffer[32] =
{ 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444,
 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444,
 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444,
 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444 };

/* Create message block */
nResult = aceBCAsyncMsgCreateBCtoRT(
 0, /* Device number */
 MSG1, /* Message ID to create */
 DBLK1, /* Message will use this data block */
 1, /* RT address */
 1, /* RT subaddress */
 10, /* Word count */
 0, /* Default message timer */
 ACE_BCCTRL_CHL_A, /* use chl A options */
 wBuffer); /* Load Initial Data */

if(nResult)
 printf(“aceBCAsyncMsgCreateBCtoRT Error: Code %d\n”, nResult);

Code Example 28. Creating a BC to RT Asynchronous Message Block

3.3.1.2.2.3.1 Asynchronous Messages Options

The following options can be “logically OR’ed” into the last parameter of any
Asynchronous Message Block Create (aceBCAsyncMsgCreateXXX) function.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

73

Table 26. Asynchronous Message Options
Message Option Description (if enabled)

ACE_BCCTRL_1553A Verifies the validity of the RT response in accordance with MIL-STD-1553A, as
opposed to MIL-STD-1553B (default).

ACE_BCCTRL_EOM_IRQ After this message executes on the 1553 bus, a ACE_IMR1_BC_MSG_EOM device
Interrupt Event will be generated. See Section 3.2.3 on how to capture device
interrupt events.

ACE_BCCTRL_BCST_MSK The value of the Broadcast Command Received bit in the received RT Status Word
becomes "don't care” in terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_SELFTST Inhibits the 1553 transmitter while executing this message for the purpose of offline
Self-Test.

ACE_BCCTRL_CHL_A This message will be sent on Bus A (Primary)

ACE_BCCTRL_CHL_B This message will be sent on Bus B (Secondary)

ACE_BCCTRL_RETRY_ENA This message will be retried (per the BC Retry policy) as the result of a response
timeout or format error condition.

ACE_BCCTRL_RES_MSK The value of the 3 Reserved bits in the received RT Status Word becomes "don't
care” in terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_TFLG_MSK The value of the Terminal Flag bit in the received RT Status Word becomes "don't
care” in terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_SSFLG_MSK The value of the Subsystem Flag bit in the received RT Status Word becomes "don't
care” in terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_SSBSY_MSK The value of the Busy bit in the received RT Status Word becomes "don't care” in
terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_SREQ_MSK The value of the Service Request bit in the received RT Status Word becomes "don't
care” in terms of affecting the occurrence of a "Status Set" condition.

ACE_BCCTRL_ME_MSK The value of the Message Error bit in the received RT Status Word becomes "don't
care” in terms of affecting the occurrence of a "Status Set" condition.

3.3.1.3 Building a Frame

In many 1553 systems, the BC is required to process messages to and from the
various RT/subaddresses at a variety of periodicities. For example, some messages
may be required to be transmitted at a 5 Hz rate, others at a 10 Hz rate, 20 Hz rate,
100Hz, etc. A common mechanism for supporting varying data rates in a 1553 system
is the use of minor and major frames.

3.3.1.3.1 Understanding Minor and Major Frames

The figure below illustrates the concepts of minor and major BC frames. A minor
frame has a fixed time duration (e.g., 10 ms or 20 ms), while a major frame is
comprised of multiple minor frames. Depending on the periodicity of individual
messages, they will either be processed in a single minor frame within the major
frame, or in multiple minor frames within the major frame.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

74

Figure 15. BC Major and Minor Frames

Minor and Major frames may be used as a mechanism for regulating periodic, highly
deterministic message traffic. For example, if the BC’s minor frame time is 10 ms with
a major frame time of one second, it is a relatively simple matter to program specific
messages with varying periodicities. For example, a 1 Hz message would appear in
one minor frame within a major frame, a 2 Hz message would appear in every 50th
minor frame, a 10 Hz message would appear in every tenth minor frame, etc.

MIL-STD-1553B defines inter-message gap time as the time from the mid-parity bit
crossing of the last word of one message to the time of the mid-sync crossing of the
command word of the subsequent message. As shown in the above figure, inter-
message gap time may be controlled by means of the BC’s Time-to-Next Message
variable (wMsgGapTime) defined in the Message Block (see Section 3.3.1.2.2)

The time-to-next message parameter defines the time from the start of the current
message to the start of the subsequent message. The BC’s minimum inter-message
gap time is approximately 10μs. Therefore, if the programmed time-to-next message
is less than the time needed to process the message plus 10μs, the resulting inter-
message gap time will be about 10μs.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

75

3.3.1.3.2 BC Opcodes

One of the salient architectural features of the AceXtreme C SDK is the advanced
capability for BC message sequence control. The highly autonomous BC operation
greatly offloads the operation of the host processor.

The AceXtreme C SDK defines a collection of BC Opcodes, which are used to
execute messages, minor and major frames, as well as some advanced conditional
control logic. Each Opcode has a unique ability and requires different input
parameters. Since Opcodes are one of the BC OUID object types, they need to be
created before they can be used in Minor or Major Frames. Some Opcodes have a
parameter value, which serves as an input for the Opcode function.

Note: For detailed information on all BC Opcodes, see the aceBCOpCodeCreate()
function definition.

Table 27. BC Opcode Definitions and Parameter Meanings
Opcode Parameter Definition

ACE_OPCODE_XEQ Message OUID Execute Message at OUID

ACE_OPCODE_JMP Jump Offset Jump within Minor Frame

ACE_OPCODE_CAL Minor Frame OUID Call a Minor Frame

ACE_OPCODE_RTN None Return from a Minor Frame

ACE_OPCODE_IRQ BC IRQ to generate Generate Host Interrupt

ACE_OPCODE_HLT None Halt the Bus Controller

ACE_OPCODE_DLY Time to Delay (ms) Delay “value” before next Opcode

ACE_OPCODE_WFT None Delays until Hardware Frame Timer reaches zero.

ACE_OPCODE_CFT Value to Compare Compare “value” to Hardware Frame Timer (100μseconds/LSB)

ACE_OPCODE_FLG GP Flag to set/clear/toggle /* Set, clear, toggle 8 GP bits */

ACE_OPCODE_LTT Time Tag Value (16-bit) Loads “value” into Hardware Time tag

ACE_OPCODE_LFT Timer Value Loads “value” into Hardware Frame Timer (100useconds/LSB)

ACE_OPCODE_SFT None Starts the Hardware Frame Timer

ACE_OPCODE_PTT None Pushes the current Hardware Time tag onto the General Purpose
Queue (GPQ)

ACE_OPCODE_PBS None Pushes the Block Status Word (BSW) from the most recent message
on to the General Purpose Queue (GPQ)

ACE_OPCODE_PSI User-Specified Value Push “value” onto General Purpose Queue (GPQ)

ACE_OPCODE_PSM DDC Hardware Memory
Offset

Pushes data at memory value onto the General Purpose Queue
(GPQ)

ACE_OPCODE_WTG None Wait for external trigger (BC_EXT) signal to change state

ACE_OPCODE_XQF Message OUID Execute and Flip Message at OUID

ACE_OPCODE_IMR Intermessage Routine
(See Table 28)

Generates Bus Controller IMR specified in the parameter field. IMRs
may be “logically OR’ed” together, allowing the use of multiple IMRs.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

76

Table 28. Intermessage Routines
Intermessage Routine Macros Description

ACEX_BC_IMR_IMMEDIATE Specified Routines will be executed immediately independent of
messaging

ACEX_BC_IMR_BREAK Bus Controller will pause execution after the routines have been
executed.

ACEX_BC_IMR_BLK_DATA_SIZE_X
Block Data Size, a data block increment will occur in conjunction
with the next message. (see Table 29 on Block Data Size Macros
and valid Data block sizes).

ACEX_BC_IMR_SET_DISCRETE_X Sets discrete output to a logic 1. X is 1 – 4.

ACEX_BC_IMR_RST_DISCRETE_X Resets discrete output to a logic 0. X is 1 – 4.

ACEX_BC_IMR_WAIT_FOR_INPUT_TRIG BC operation will be paused until an external BC trigger signal is
detected.

ACEX_BC_IMR_NO_RESP_BOTH_BUS Disables the current RT’s transmitter on both buses.

ACEX_BC_IMR_SET_SRQ_IN_STATUS Indicates the service request bit in the status of the last RT to
respond will be set.

ACEX_BC_IMR_RST_SRQ_IN_STATUS Indicates the service request bit in the status of the last RT to
respond will be cleared.

ACEX_BC_IMR_SET_TFG_IN_STATUS Indicates the terminal flag bit in the status of the last RT to respond
will be set.

ACEX_BC_IMR_RST_TFG_IN_STATUS Indicates the terminal flag bit in the status of the last RT to respond
will be cleared.

ACEX_BC_IMR_SET_BSY_IN_STATUS Indicates the busy bit in the status of the last RT to respond will be
set.

ACEX_BC_IMR_RST_BSY_IN_STATUS Indicates the busy bit in the status of the last RT to respond will be
cleared.

ACEX_BC_IMR_RETRY_SAME_ALT_REMAIN_ALT
The next message will be retried on the same bus and then on the
alternate bus and remain on the alternated bus, overriding any
current message retry settings.

ACEX_BC_IMR_RETRY_ALT_REMAIN_ALT The next message will be retried and remain on the alternate bus
overriding any current message retry settings.

ACEX_BC_IMR_RETRY_ALT The next message will be retried on the alternate bus overriding any
current message retry settings.

ACEX_BC_IMR_RETRY_SAME The next message will be retried on the same bus overriding any
current message retry settings.

ACEX_BC_IMR_EXEC_NEXT_MSG_ONCE The next message will be executed once and skipped each
additional attempt.

ACEX_BC_IMR_SKIP_NEXT_MSG_ONCE The next message will be skipped once and executed each
additional attempt.

ACEX_BC_IMR_SKIP_NEXT_MSG The next message will always be skipped.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

77

Table 29. Block Data Size
Block Data Size Macros Description

ACEX_BC_IMR_BLK_DATA_SIZE_64 Data block size of 64 words.

ACEX_BC_IMR_BLK_DATA_SIZE_128 Data block size of 128 words.

ACEX_BC_IMR_BLK_DATA_SIZE_256 Data block size of 256 words.

ACEX_BC_IMR_BLK_DATA_SIZE_512 Data block size of 512 words.

ACEX_BC_IMR_BLK_DATA_SIZE_1024 Data block size of 1K words.

ACEX_BC_IMR_BLK_DATA_SIZE_2048 Data block size of 2K words.

ACEX_BC_IMR_BLK_DATA_SIZE_4096 Data block size of 4K words.

ACEX_BC_IMR_BLK_DATA_SIZE_8192 Data block size of 8K words.

ACEX_BC_IMR_BLK_DATA_SIZE_16384 Data block size of 16K words.

ACEX_BC_IMR_BLK_DATA_SIZE_32768 Data block size of 32K words.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

78

S16BIT nResult;
#define OP1 0x0001
#define OP1 0x0001

/* Create opcode to execute MSG1 */
nResult = aceBCOpCodeCreate(
 0, /* IDN */
 OP1, /* Opcode OUID to assign */
 ACE_OPCODE_XEQ, /* Opcode “Execute Msg” */
 ACE_CNDTST_ALWAYS, /* Conditional Execution? */
 MSG1, /* Message OUID to Send */
 0, /* Reserved */
 0); /* Reserved */

if(nResult)
 printf(“aceBCOpCodeCreate Error: Code %d\n”, nResult);

/* Create opcode to execute MSG2 */
nResult = aceBCOpCodeCreate(
 0, /* LDN */
 OP1, /* Opcode OUID to assign */
 ACE_OPCODE_XEQ, /* Opcode “Execute Msg” */
 ACE_CNDTST_ALWAYS, /* Conditional Execution? */
 MSG2, /* Message OUID to Send */
 0, /* Reserved */
 0); /* Reserved */

if(nResult)
 printf(“aceBCOpCodeCreate Error: Code %d\n”, nResult);

Code Example 29. Creating Two XEQ (Execute Message) Opcodes

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

79

Figure 16. BC Opcode Relationships

3.3.1.3.2.1 Conditional Execution

Every BC Opcode has the ability to execute conditionally. The “wCondition” variable
defines when the Opcode is allowed to execute. For example, an
ACE_OPCODE_XEQ Opcode can be defined to only execute if there was response
from the last accessed RT (ACE_CNDTST_NO_RES). This allows certain Opcodes
to only execute during specific user conditions. See the aceBCOpCodeCreate()
function definition for all available execution conditions.

3.3.1.3.2.2 Message Execution Opcode

The Execute Message (ACE_OPCODE_XEQ) instruction is the primary BC opcode.
The “dwParameter1” variable in aceBCOpCodeCreate() should reference the OUID
of a desired pre-defined Message Block for the desired message to be executed. See
Sections 3.3.1.2.2 on how to create Messages. Once the Opcode is created it can be
placed into a Minor Frame for processing.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

80

3.3.1.3.2.3 Creating a Minor Frame

Based on the explanation of minor and major frames in Section 3.3.1.3.1, it should be
clear that a minor frame is a collection of messages to be executed. Rather than a
collection of Messages, the AceXtreme C SDK defines a minor frame as a collection
of Opcodes bound in a defined time-window (Minor frame time). Most of the Opcodes
in a minor frame will typically be used to execute 1553 messages
(ACE_OPCODE_XEQ).

Figure 17. Minor Frame Defined as a Collection of BC Opcodes

Note: If any Opcodes are Message Execution Opcodes (XEQ), the BC engine will

delay for that defined BC Message Blocks’ Inter-Message Gap time. See
Section 3.3.1.2.2 on how to create BC Message Blocks

Once all desired Opcodes have been created, a minor frame can be defined. BC
Frames are defined using the aceBCFrameCreate() for more information. If the time
to execute all BC messages exceeds the Minor Frame Time, the Minor Frame time
will be increased to accommodate all messages. This occurrence is known as a
frame time overrun.

3.3.1.3.2.3.1 32-Bit Expand BC Frame Time Support

The function acexBCFrameCreate() allows a Multi-Function AceXtreme card to
support a 24-Bit frame time. This function is identical to aceBCFrameCreate() with
the exception of the frame time parameter is now a unsigned 32-Bit number with the
upper 8 bits being reserved.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

81

S16BIT nResult;
S16BIT aOpCodes[2];
 #define MNR1 0x0001

/* Create Minor Frame */
aOpCodes[0] = OP1;
aOpCodes[1] = OP2;
aceBCFrameCreate(
 0, /* Device Number */
 FRM1, /* OUID */
 ACE_FRAME_MINOR, /* Frame Type */
 aOpCodes, /* Opcodes Array */
 2, /* Number of Opcodes */
 1000, /* Minor frame time */
 0); /* Reserved */

if(nResult)
 printf(“aceBCFrameCreate Error: Code %d\n”, nResult);

Code Example 30. Creating a Minor Frame with Two Opcodes

3.3.1.3.2.3.2 User-Defined Interrupt Opcode

The User-Defined Interrupt (ACE_OPCODE_IRQ) instruction gives the user “event-
driven” control of the Opcode sequencer. Just like all other Opcodes, it can be placed
into a Minor Frame and can execute conditionally. When executed, it will generate one
of four Opcode Events (depending on its parameter). This event will be marked in the
device interrupt callback (see Section 3.2.3) and can be used to trigger data
processing. The “dwParameter1” variable in aceBCOpCodeCreate() should reference
which User-Defined Event should be generated.

3.3.1.3.2.4 General Purpose Queue and Flags

In addition to using the User-Defined Interrupt Opcode to synchronize the host to
Opcode activity, the AceXtreme C SDK has two more features to aid in event-driven
processing. These features are the General Purpose Queue and General Purpose
Flags.

3.3.1.3.2.4.1 General Purpose Queue (GPQ)

The General Purpose Queue allows the user to store necessary information needed to
process Opcodes. The GPQ is 32 entries deep and can only been filled by the GPQ-
based Opcodes (see Section 3.3.1.2.2). Information such as the Hardware Timetag
and BC Block Status Word can be placed onto the queue at a specific time during
Opcode Execution. By using the GPQ “Push” Opcodes, the user can have a more
event-driven interface and have additional information about the current state of the

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

82

Minor Frame. Once a “Push” Opcode is created as seen below, it can be added to a
Minor Frame just like any other Opcode.

S16BIT nResult;
S16BIT aOpCodes[2];
 #define OP2 0x0001

/* Create Subroutine Call Opcode */
nResult = aceBCOpCodeCreate(
 0, /* LDN */
 OP1, /* Opcode OUID to assign */
 ACE_OPCODE_PTT, /* Opcode “Push Timetag” */
 ACE_CNDTST_ALWAYS, /* Conditional Execution */
 0, /* Reserved */
 0, /* Reserved */
 0); /* Reserved */

 if(nResult)
 printf(“aceBCOpCodeCreate Error: Code %d\n”, nResult);

Code Example 31. Creating a Push Timetag to GPQ Opcode

As entries are added to the GPQ via the “Push” Opcodes, the user can read the GPQ
directly, and can begin processing data based on the new information. Entries are
returned in FIFO order and are automatically removed allow space for new entries.
The GPQ can be read via the aceBCGPQRead() function.

S16BIT nResult;
GPQENTRY sGPQEntry

/* Read an Entry from the GPQ */
nResult = aceBCGPQRead(
 0, /* LDN */
 &sGPQEntry); /* GPQ Entry storage */

if(nResult)
 printf(“aceBCGPQRead Error: Code %d\n”, nResult);

Code Example 32. Reading an Entry from the GPQ

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

83

3.3.1.3.2.5 General Purpose Flags (GPF)

Another method for synchronizing the Autonomous Opcode Engine and the Host is
using the seven available General-Purpose Flags. These flags can be set, cleared,
and queried directly from the host (via the aceBCSetGPFState() function) or from the
GPF Opcode (ACE_OPCODE_FLG). In addition, any Opcode can execute
conditionally based on the state of a GP Flag. See Section 3.3.1.3.2.1 on Condition
Execution.

S16BIT nResult;
S16BIT aOpCodes[2];
 #define OP2 0x0001

/* Create GP Flag Opcode (Clear GP1) */
nResult = aceBCOpCodeCreate(
 0, /* LDN */
 OP1, /* Opcode OUID to assign */
 ACE_OPCODE_FLG, /* Opcode “Modify GPF Flag” */
 ACE_CNDTST_ALWAYS, /* Conditional Execution? */
 0x0200, /* Clear GFP 1 */
 0, /* Reserved */
 0); /* Reserved */

if(nResult)
 printf(“aceBCOpCodeCreate Error: Code %d\n”, nResult);

Code Example 33. Creating a GPF Opcode (Clearing GPF 1)

S16BIT nResult;

/* Set GPF1 to active */
nResult = aceBCSetGPFState(
 0, /* LDN */
 ACE_CND_GP1, /* Modify GPF 1 */
 ACE_GPF_SET); /* Set GPF 1 */

if(nResult)
 printf(“aceBCSetGPFState Error: Code %d\n”, nResult);

Code Example 34. Setting GPF State via Host (Setting GPF 1)

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

84

3.3.1.3.2.5.1 General Purpose Flags (GPF) and Conditional Execution

A common use of General Purpose Flags is to control execution of Opcodes. Any
Opcode can be created to conditionally execute only if a specific GP flag is set (or
cleared). This can be used to dynamically control execution of Messages
(ACE_OPCODE_XEQ), Frames (ACE_OPCODE_CAL), and any other event that is
triggered by an Opcode executing.

S16BIT nResult;
#define OP1 0x0001
#define OP2 0x0002

/* Create opcode to execute MSG1 */
nResult = aceBCOpCodeCreate(
 0, /* IDN */
 OP1, /* Opcode OUID to assign */
 ACE_OPCODE_XEQ, /* Opcode “Execute Msg” */
 ACE_CNDTST_GP5_1, /* Execute if GPF5==1 */
 MSG1, /* Message OUID to Send */
 0, /* Reserved */
 0); /* Reserved */

if(nResult)
 printf(“aceBCOpCodeCreate Error: Code %d\n”, nResult);

Code Example 35. Creating an XEQ (Execute Message) Dependant on GPF5

By making the above Opcode dependent on a GP Flag, the user can fully control
when that Opcode (and 1553 message) will execute. If GPF5 is set, the Opcode will
execute. If it is cleared, the Opcode will not execute and will be treated as a NOOP by
the BC Opcode Engine. GP Flags can be set, cleared, and toggled via the
aceBCSetGPFState() function (see Section 3.3.1.3.2.5).

Note: By setting ACE_OPCODE_CAL Opcodes to be conditional based on GP
Flags, the user can have full control of Minor and Major frames in a similar
fashion as above.

3.3.1.3.2.6 Creating a Major Frame

A Major Frame is defined as a collection of Minor Frames (see Section 3.3.1.3.1). The
AceXtreme C SDK defines a Major Frame as a collection of Frame Subroutine Call
Opcodes. This allows one “Major” Frame to execute all the subsequent minor frames.
A specific Opcode (ACE_OPCODE_CAL) is used to call a pre-defined minor frame.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

85

3.3.1.3.2.6.1 Frame Subroutine Call Opcode

The Frame Subroutine Call (ACE_OPCODE_CAL) instruction is used to execute pre-
created Minor Frames. The “dwParameter1” variable in aceBCOpCodeCreate()
should reference the OUID of a pre-defined Minor Frame for the desired Minor Frame
to be executed. See section 3.3.1.3.2.3 on how to create Minor Frames.

S16BIT nResult;
S16BIT aOpCodes[2];
 #define OP2 0x0001

/* Create Subroutine Call Opcode */
nResult = aceBCOpCodeCreate(
 0, /* LDN */
 OP1, /* Opcode OUID to assign */
 ACE_OPCODE_CAL, /* Opcode “Call Frame” */
 ACE_CNDTST_ALWAYS, /* Conditional Execution? */
 MNR1, /* OUID of Frame to Call */
 0, /* Reserved */
 0); /* Reserved */

if(nResult) printf(“aceBCOpCodeCreate Error: Code %d\n”, nResult);

Code Example 36. Creating a Subroutine Call Opcode to call Minor Frame “MNR1”

S16BIT nResult;
S16BIT aOpCodes[2];
 #define MJR1 0x0001

/* Create Minor Frame */
aOpCodes[0] = OP1;
aOpCodes[1] = OP2;
nResult = aceBCFrameCreate(
 0, /* LDN */
 FRM1, /* Frame OUID to assign */
 ACE_FRAME_MINOR, /* Type is Minor Frame */
 aOpCodes, /* Opcode Array */
 2, /* Number of Opcodes in Array */
 1000, /* Minor Frame Time (100us res) */
 0); /* Reserved */

if(nResult)
 printf(“aceBCFrameCreate Error: Code %d\n”, nResult);

Code Example 37. Creating a Major Frame (Calling 2 Minor Frames)

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

86

3.3.1.3.3 BC Framing/Sequencing Summary

In summary, the highest-level object in BC Sequencing is the Major Frame. Major
Frames are a collection of Opcodes (typically ACE_OPCODE_CAL) calling Minor
Frames. Minor Frames are a collection of Opcodes (typically ACE_OPCODE_XEQ)
executing Messages. Messages have linked Data Blocks to store 1553 Data.

Figure 18. BC Framing/Sequencing Object Relation

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

87

3.3.1.4 Activating the BC

Once the Bus Controller is configured and all BC Data Blocks, Message Blocks,
Opcodes, Minor and Major Frames have been created, the BC is ready to begin
activity on the 1553 bus. By activating the BC, the user-selected Major Frame will
start executing its Opcode contents, branching to any Minor Frames and Executing
any Synchronous messages defined within.

3.3.1.4.1 Starting and Stopping

The BC is started and stopped dynamically by the user via the aceBCStart() and
aceBCStop() functions. To start the BC, the user must supply the OUID of the Major
Frame to execute.

Note: By stopping the Bus Controller via aceBCStart(), the BC Engine will
complete the currently executing Opcode and will then halt.

Note: The third parameter of aceBCStart() can supply a “Major Frame Execution”
value. If this value is “-1”, the Major Frame will continue to run until stopped
via aceBCStop(). If any other positive value is supplied, the Major Frame will
execute X times, where X equals said value.

S16BIT nResult;
#define MAJOR1 0x0001

/* Start the Bus Controller */
nResult = aceBCStart(
 0, /* LDN */
 MAJOR1, /* OUID of Major Frame */
 -1); /* Run Forever */

if(nResult) printf(“aceBCStart Error: Code %d\n”, nResult);

Code Example 38. Starting the Bus Controller (BC)

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

88

S16BIT nResult;

/* Stop the Bus Controller */
nResult = aceBCStop(
 0); /* LDN */

if(nResult) printf(“aceBCStop Error: Code %d\n”, nResult);

Code Example 39. Stopping the Bus Controller (BC)

3.3.1.4.2 Sending Asynchronous Messages

Any defined Asynchronous Message can be executed while the BC is running (via
aceBCStart()). The AceXtreme C SDK defines two methods of sending Asynchronous
Messages: High-Priority and Low-Priority. The application need determines which
method to use.

Note: Make sure Asynchronous Messaging is enabled before creating any
Message Blocks (See section 3.3.1.1)

3.3.1.4.2.1 Sending High-Priority (HP) Asynchronous Messages

Sending an Asynchronous Message High-Priority will execute that message on the
1553 bus immediately following the currently executing message (if a message is in
progress). High-Priority Asynchronous Messages can be sent via the
aceBCSendAsyncMsgHP() function.

S16BIT nResult;
#define MSG1 0x0001

/* Send an HP Asynchronous Message */
nResult = aceBCSendAsyncMsgHP(
 0, /* LDN */
 MSG1, /* OUID of Message to send */
 0); /* Reserved */

if(nResult) printf(“aceBCSendAsyncMsgHP Error: Code %d\n”,
nResult);

Code Example 40. Sending a High-Priority Asynchronous Message

Note: Sending High-Priority Asynchronous Messages increases the Minor Frame
time and may potentially cause a frame time overrun.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

89

3.3.1.4.2.2 Sending Low-Priority Asynchronous Messages

Sending Asynchronous Messages Low-Priority will attempt to send the messages in
any gap time left over at the end of the minor frame. Low-Priority Asynchronous
Messages are placed in a queue and sent in FIFO order as time allows. When in Low-
Priority mode, Asynchronous Messages are automatically added to the end of the LP
Queue as they are created.

Note: If more than one Asynchronous Message is on the Low-Priority queue and
there is not enough dead time to send all of them, the remaining messages
will be sent in the next Minor Frame.

S16BIT nResult;
#define MSG1 0x0001
U16BIT wMsgLeft;

/* Send LP Asynchronous Messages */
nResult = aceBCSendAsyncMsgLP(
 0, /* LDN */
 &wMsgLeft, /* Number of Async. Msgs left to send */
 0); /* Reserved */

if(nResult)
 printf(“aceBCSendAsyncMsgLP Error: Code %d\n”, nResult);

Code Example 41. Sending a Low-Priority Asynchronous Message

Note: The LP Asynchronous Message Queue can be manually cleared via the
aceBCEmptyAsyncList () function.

3.3.1.5 Consuming Data

The Bus Controller supports three methods of consuming BC Data: Direct Message
Block, Direct Data Block, and Host Buffer. Each method has particular advantages
based on the user’s application needs.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

90

3.3.1.5.1 Data via Host Buffer

The BC Host Buffer (HBUF) is a circular memory buffer resident on the host that
contains the log of all messages sent by the Bus Controller, in the order they
appeared on the 1553 bus.

One advantage of using a Host Buffer is that all messages are automatically
transferred to the HBUF from the DDC hardware by means of internally configured
interrupt events. This ensures that BC data is removed from DDC hardware and
placed into the Host Buffer before any data loss can occur.

Another advantage is that the size of the host buffer can be fairly large and can serve
as an elasticity buffer for applications that cannot consume data at a high rate.

3.3.1.5.1.1 Installing the Host Buffer

The Host Buffer should be installed before any bus traffic occurs.

Note: The Host Buffer size should typically be 256 times larger that the maximum
capacity of the scheduled Message Data (number of executing messages).

The following equation can be used to calculate the correct Host Buffer size:

HBUFSIZE = [(NUM_MESSSAGES) * 40 words] * 256

S16BIT nResult;
#define NUM_MESSAGES = 5

/* Install the BC Host Buffer */
nResult = aceBCInstallHBuf(
 0, /* LDN */
 ((NUM_MESSAGES)*40)*256); /* Host Buffer Size */

if(nResult)
 printf(“aceBCInstallHBuf Error: Code %d\n”, nResult);

Code Example 42. Installing the BC Host Buffer

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

91

3.3.1.5.1.2 Reading the Host Buffer

The Host Buffer architecture is designed to automatically remove monitored data from
the DDC hardware and place it into the host-allocated Host Buffer. It is the user’s
responsibility to read entries from the Host Buffer for consumption.

Messages can be read off the Host Buffer in two formats: Raw or Decoded.
Depending on which method is used, the messages taken off the Host Buffer will be
returned in FIFO order or LIFO order.

3.3.1.5.1.2.1 RAW FORMAT

The Raw Format returns a U16BIT pointer to the binary data. Using this method also
allows more than one message to be read off the Host Buffer at one time. Each
message is fixed-length of 42 words and uses zero fill words for messages not
requiring the word maximum. For example, if two messages have been sent, the
binary data will be 84 words deep, with the second message starting at offset 42.

Table 30. BC Host Buffer Raw Format for One Message
Word MSB LSB

Bits 15 7 0
0 BC Control Word

1 1553 Command Word

2 Bit [15] EOM
Bits [14:8]

Data Length
(in Words)

Bits [7:0]
1553 Message Type

3 Time to Next Message

4 Time Tag Word

5 Block Status Word

6 Loopback Word

7 RT Status Word

8 2nd Command Word (RTRT Transfers only)

9 2nd RT Status Word (RTRT Transfers only)

10 Data Word 0

11 Data Word 1

n+10 Data Word n

Messages are read from the Host Buffer in Raw Format using the
aceBCGetHBufMsgsRaw() function. The function returns up to “wBufferSize” words
or all messages, whichever is smaller. The “pdwMsgCount” pointer informs the user of
the number of messages returned.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

92

Note: Each message is a fixed length of 42 words.

S16BIT nResult;
U32BIT dwStkLost, dwHBufLost, dwMsgCount;
U16BIT wBuffer[400] = { 0x00000000 };

/* Get Raw Messages from the Host Buffer */
nResult = aceBCGetHBufMsgsRaw(
 0, /* LDN */
 wBuffer, /* Buffer for Data */
 400, /* Max size of Buffer */
 &dwMsgCount, /* Number of Msgs placed in Buffer */
 &dwHBufLost); /* Msgs lost from Hbuf (if any) */

if(nResult)
 printf(“aceBCInstallHBuf Error: Code %d\n”, nResult);

Code Example 43. Reading Raw Data From the Host Buffer

3.3.1.5.1.2.2 DECODED FORMAT

The Decoded Format reads one message off the Host Buffer and decodes it into a
MSGSTRUCT structure object. In addition, the user can decide whether to read the
oldest (next) or latest message and whether or not to remove (purge) the message
from the Host Buffer.

A message can be read from the Host Buffer in Decoded Format using the
aceBCGetHBufMsgDecoded() function. The function returns one message decoded
into the “pMsg” MSGSTRUCT variable. The “wMsgLoc” variable is used to define
which message to read and whether or not to remove it from the Host Buffer.

Table 31. BC Host Buffer Message Location and Purge Options
(wMsgLoc)

Message Description
ACE_BC_MSGLOC_NEXT_PURGE Reads next message and takes it off of the host buffer

ACE_BC_MSGLOC_NEXT_NPURGE Reads next message and leaves it on the host buffer

ACE_BC_MSGLOC_LATEST_PURGE Reads current message and takes it off of the host buffer

ACE_BC_MSGLOC_LATEST_NPURGE Reads current message and leaves it on the host buffer

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

93

/*Global (used for all modes) Message Structure for decoded 1553 msgs */
typedef struct MSGSTRUCT
{
 U16BIT wTYPE; /* Contains the msg type (see above) */
 U16BIT wBlkSts; /* Contains the block status word */
 U16BIT wTimeTag; /* Time Tag of message */
 U16BIT wCmdWrd1; /* First command word */
 U16BIT wCmdWrd2; /* Second command word (RT to RT) */
 U16BIT wCmdWrd1Flg; /* Is command word 1 valid? */
 U16BIT wCmdWrd2Flg; /* Is command word 2 valid? */
 U16BIT wStsWrd1; /* First status word */
 U16BIT wStsWrd2; /* Second status word */
 U16BIT wStsWrd1Flg; /* Is status word 1 valid? */
 U16BIT wStsWrd2Flg; /* Is status word 2 valid? */
 U16BIT wWordCount; /* Number of valid data words */
 U16BIT aDataWrds[32]; /* An array of data words */

/* The following are only applicable in BC mode */
 U16BIT wBCCtrlWrd; /* Contains the BC control word */
 U16BIT wBCGapTime; /* Message gap time word */
 U16BIT wBCLoopBack1; /* First looped back word */
 U16BIT wTimeTag2; /* wBCLoopBack2 is redefined as TimeTag2 */
 U16BIT wBCLoopback1Flg; /* Is loopback 1 valid? */
 U16BIT wTimeTag3; /* wBCLoopBack2Flg is redefined as TimeTag3 */
}MSGSTRUCT;

Figure 19. BC Host Buffer MSGSTRUCT Object Definition

S16BIT nResult;
U32BIT dwStkLost, dwHBufLost, dwMsgCount;
MSGSTRUCT sMsg;

/* Get a Decoded Message from the Host Buffer */
nResult = aceBCGetHBufMsgDecoded(
 0, /* LDN */
 &sMsg, /* Message storage */
 &dwMsgCount, /* Number of Msgs */
 &dwHBufLost, /* Hbuf Lost Msgs */
 ACE_BC_MSGLOC_NEXT_PURGE); /* Read Next & Delete */

if(nResult)
 printf(“aceBCGetHBufMsgDecoded Error: Code %d\n”,nResult);

Code Example 44. Reading a Decoded Message from the Host Buffer

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

94

3.3.1.5.2 BC Block Status Word

The Block Status Word (BSW) is used to identify the health of the message. The BSW
contains information regarding the message, specifying whether the message is in
progress or has been completed, what channel the message was processed on, and
whether or not there were any errors in the message table. The BC Block status
word’s bits are defined in

Table 32. BC Block Status Word
Bit Description
15

(MSB)
EOM Set at the completion of a BC message, regardless of whether or not there

were any errors in the message.

14 SOM Set at the start of a BC message and cleared at the end of the message.

13 A/B CHANNEL This bit will be low if the message was processed on Channel A or high if
the message was processed on Channel B

12 ERROR FLAG If this bit is high, one or more of bits 10, 9, and/or 8 are also set high.

11 STATUS SET If set, indicates that in one of the lower 11 bits the RT Status Word
received from a responding RT contained an unexpected bit value.

10 FORMAT ERROR If set, indicates the received portion of a message contained one or more
violations of the 1553 message validation criteria (sync, encoding, parity,
bit count, word count, etc.), or the RT's status word received from a
responding RT contained an incorrect RT address field.

9 NO RESPONSE TIMEOUT If set, indicates that an RT has either not responded or has responded
later than the BC No Response Timeout time.

8 LOOP TEST FAIL A loopback test is performed on the transmitted portion of every message
in BC mode. A validity check is performed on the received version of every
word transmitted by the BC. In addition, a bit-by-bit comparison is
performed on the last word transmitted by the BC for each message. If
either the received version of any transmitted word is invalid (sync,
encoding, bit count, and/or parity error) and/or the received version of the
last word transmitted by the BC does not match the transmitted version,
the LOOP TEST FAIL bit will be set.

7 MASKED STATUS SET It will be set if one or both of the following conditions occur:
1. If one (or more) of the Status Mask bits (14 through 9) in the BC

Control Word is logic "0" and the corresponding bits are set to
logic "1" in the received RT Status Word. In the case of the
RESERVED BITS MASK (bit 9) set to logic "0," any or all of the 3
Reserved Status bits being set will result in a MASKED STATUS
SET condition;

2. If BROADCAST MASK ENABLED/XOR is logic "1" and the
MASK BROADCAST bit of the message's BC Control Word is
logic "0" and the BROADCAST COMMAND RECEIVED bit in the
received RT Status Word is logic "1".

6 RETRY COUNT 1 Used in conjunction with Bit 5 to indicate the number of retries for a given
message. See Table 33 for retry count values.

5 RETRY COUNT 0 Used in conjunction with Bit 6 to indicate the number of retries for a given
message. See Table 33 for retry count values.

4 GOOD DATA This bit is set to logic "1" following completion of a valid (error-free) RT-to-
BC transfer, RT-to-RT transfer, or transmit mode code with data message.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

95

Table 32. BC Block Status Word
Bit Description

BLOCK TRANSFER This bit is set to logic "0" following an invalid message. GOOD DATA
BLOCK TRANSFER is always logic "0" following a BC-to-RT transfer, a
mode code with data, or a mode code without data.

3 WRONG STATUS
ADDRESS / NO GAP

This bit is set if either or both of the following occur:
1. The RT address field of a responding RT does not match the RT

address in the Command Word
2. If the GAP CHECK ENABLED bit of Configuration Register #5 is

set to logic "1" and a responding RT responds with a response
time of less than 4 μs,.

2 WORD COUNT ERROR If set, indicates that a responding RT did not transmit the correct number
of Data Words. Will always be logic "0" following a BC-to-RT transfer,
receive mode code message, or transmit mode code without data
message.

1 INCORRECT SYNC TYPE If set, indicates that a responding RT responded with a Data sync in a
Status Word and/or a Command/Status sync in a Data Word.

0
(LSB)

INVALID WORD Indicates an RT responded with one or more words containing one or
more of the following error types: sync field error, Manchester encoding
error, parity error, and/or bit count error.

Table 33. BC Block Status Word Retry Count
Retry Count 1 (Bit 6) Retry Count 0 (Bit 5) Number of Retries

0 0 0

0 1 1

1 0 N/A

1 1 2

3.3.1.5.3 Data via Direct Message

For applications that have strict timing requirements and need quick access to specific
1553 message data, the user can read message status and data directly off of the
DDC hardware. This is accomplished using the aceBCGetMsgFromIDRaw() and
aceBCGetMsgFromIDDecoded() functions.

3.3.1.5.3.1 Reading a Message Block

The BC Message Block holds all routing information about a particular 1553 message,
including a link to the BC Data Block holding the 1553 data words. Every time the
Message is executed on the 1553 bus, the BC Message Block is updated with new
status information, as well as any detected errors. If a message is to be sent more
than once, it is the user’s responsibility to read the Message Block before any new
data might overwrite it.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

96

Messages can be read directly from the DDC hardware in two formats: Raw or
Decoded. Application needs should influence which method is used. To read a BC
Message Block, the user must know the OUID of the desired message.

3.3.1.5.3.1.1 RAW FORMAT

The Raw Format returns a U16BIT pointer to the binary data of one message. Each
message is a fixed-length of 42 words and uses zero fill words for messages not
requiring the word maximum. In addition, the user can decide to mark the message as
read, which will cause any subsequent successful calls to return new data. If no new
data is available, an error will be returned.

Note: The aceBCGetMsgFromIDRaw() function only returns data (42 words, fixed-
length) if that BC Message Block has any new data since the last time it has
been accessed.

Table 34. BC Raw Format for One Message

Word MSB LSB

Bits 15 7 0
0 BC Control Word

1 1553 Command Word

2 Bit [15] EOM Bits [14:8]
Data Length (in Words)

Bits [7:0]
1553 Message Type

3 Time to Next Message

4 Time Tag Word

5 Block Status Word

6 Loopback Word

7 RT Status Word

8 2nd Command Word (RTRT Transfers only)

9 2nd RT Status Word (RTRT Transfers only)

10 Data Word 0

11 Data Word 1

n+10 Data Word n

Messages are read directly in Raw Format using the aceBCGetMsgFromIDRaw()
function. The function returns 42 words if the BC Message Block contains new data.
The return value of the function informs the user of the number of messages returned
or if an error occurred.

Note: Each message is a fixed length of 42 words.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

97

S16BIT nResult;
U16BIT wBuffer[42] = { 0x00000000 };
#define MSG_MSG_ID 0x0001

/* Get Raw Messages from the Host Buffer */
nResult = aceBCGetMsgFromIDRaw(
 0, /* LDN */
 MY_MSG_ID, /* OUID of Message to Read */
 wBuffer, /* Buffer for Data */
 TRUE); /* Mark Message as “Read” */
if(nResult)
 printf(“aceBCGetMsgFromIDRaw() Error: Code %d\n”,nResult);

Code Example 45. Reading Raw Data From a BC Message Block

3.3.1.5.3.1.2 DECODED FORMAT

The Decoded Format reads one message from the DDC hardware and decodes it into
a MSGSTRUCT structure object. In addition, the user can decide to mark the
message as read, which will cause any subsequent successful calls to return new
data. If no new data is available, an error will be returned.

A Message can be directly read from DDC hardware in Decoded Format using the
aceBCGetMsgFromIDDecoded() function. The function will return one message
decoded into the “pMsg” MSGSTRUCT variable.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

98

/*Global (used for all modes) Message Structure for decoded 1553 msgs */
typedef struct MSGSTRUCT
{
 U16BIT wTYPE; /* Contains the msg type (see above) */
 U16BIT wBlkSts; /* Contains the block status word */
 U16BIT wTimeTag; /* Time Tag of message */
 U16BIT wCmdWrd1; /* First command word */
 U16BIT wCmdWrd2; /* Second command word (RT to RT) */
 U16BIT wCmdWrd1Flg; /* Is command word 1 valid? */
 U16BIT wCmdWrd2Flg; /* Is command word 2 valid? */
 U16BIT wStsWrd1; /* First status word */
 U16BIT wStsWrd2; /* Second status word */
 U16BIT wStsWrd1Flg; /* Is status word 1 valid? */
 U16BIT wStsWrd2Flg; /* Is status word 2 valid? */
 U16BIT wWordCount; /* Number of valid data words */
 U16BIT aDataWrds[32]; /* An array of data words */

/* The following are only applicable in BC mode */
 U16BIT wBCCtrlWrd; /* Contains the BC control word */
 U16BIT wBCGapTime; /* Message gap time word */
 U16BIT wBCLoopBack1; /* First looped back word */
 U16BIT wTimeTag2; /* wBCLoopBack2 is redefined as TimeTag2 */
 U16BIT wBCLoopback1Flg;/* Is loopback 1 valid? */
 U16BIT wTimeTag3; /* wBCLoopBack2Flg is redefined as TimeTag3 */
}MSGSTRUCT;

Figure 20. BC Message Block MSGSTRUCT Object Definition

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

99

S16BIT nResult;
MSGSTRUCT sMsg;
#define MSG_MSG_ID 0x0001

/* Get Decoded Messages from the BC Message Block */
nResult = aceBCGetMsgFromIDDecoded(
 0, /* LDN */
 MY_MSG_ID, /* OUID of Message to Read */
 &sMsg, /* Message storage */
 TRUE); /* Mark Msg as “Read” */

if(nResult)
 printf(“aceBCGetMsgFromIDDecoded()Error: %d\n”,nResult);

Code Example 46. Reading a Decoded Message from the BC Message
Block

3.3.1.5.4 Data via Direct Data Blocks (Read/Write)

In addition to reading BC Data directly and via the Host Buffer, any defined BC Data
Block can be read to or written to asynchronously by the user via the
aceBCDataBlkRead() and aceBCDataBlkWrite() functions. See Section 3.3.1.2.1 on
creating BC Data Blocks.

Note: The “wBufferSize” variable should not exceed 32 words.

S16BIT nResult;
U16BIT wData[32];
#define BCDBLK1 0x0001 /* BC Data Block */

/* Read a BC Data Block */
nResult = aceBCDataBlkRead(
 0, /* LDN */
 BCDBLK1, /* OUID of Data Block to Read */
 wData, /* Data Storage */
 32, /* Number of words to read */
 0); /* Read offset in Words */

if(nResult)
 printf(“aceBCDataBlkRead Error: Code %d\n”, nResult);

Code Example 47. Reading a BC Data Block

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

100

3.3.1.6 Interrupt Events

Some applications may benefit from event notifications regarding the state of the Bus
Controller. The following events directly relate to the Bus Controller (BC) mode of
operation. For information on how to configure events and callbacks, see Section
3.2.3.

3.3.1.7 Dynamic Bus Controller

Dynamic Bus Control (DBC) is provided to allow the Bus Controller a mechanism to
offer a potential bus controller, control of the MIL-STD-1553 data bus. Control is
offered by the Bus Controller by sending the mode code Dynamic Bus Controller
(00000) to an active RT on the bus. The RT will respond with the dynamic bus
controller bit set in its status word if the RT is accepting control over the data bus.

DBC can be enabled to a BC and any RT in a channel. To enable BC with DBC, an
optional RT address can be assigned to the BC. The RT address assigned to the BC
will activate when the BC relinquishes control of the data bus. The BC will not activate
as an RT after it is deactivated when an RT address is not assigned to the BC.

The RT, that BC is to activate, does not have to be inactive. If the RT is already active,
BC does nothing but deactivate itself.

Because only one active BC is allowed in a bus, other potential Bus Controllers must
thus be configured as inactive. An inactive BC can be activated only after a RT in the
same channel accepts DBC request.

When an RT accepts control of the data bus via the Dynamic bus controller mode
code, a delay value must be specified in order for the RT to deactivate, and configure
itself as the bus controller. This delay value is specified as the “hold-off time” in the

Table 35. BC Interrupt Event Options
Event Description

ACE_IMR1_EOM (Bit 0) Enable End-of-Message Event

ACE_IMR1_BC_STATUS_SET (Bit 1) Enable RT Status Word Error Event

ACE_IMR1_BC_MSG_EOM (Bit 4) Enable Selective BC End-Of-Message Event

ACE_IMR1_TT_ROVER (Bit 6) Indicates the Hardware Timetag has rolled over

ACE_IMR1_BC_RETRY (Bit 8) Indicates that a BC Message has been retried

ACE_IMR1_BCRT_TX_TIMEOUT (Bit 13) Indicates a BC Message has timed-out

ACE_IMR2_BC_UIRQ0 Indicates User-Defined Opcode Event #0 has occurred.

ACE_IMR2_BC_UIRQ1 Indicates User-Defined Opcode Event #1 has occurred.

ACE_IMR2_BC_UIRQ2 Indicates User-Defined Opcode Event #2 has occurred.

ACE_IMR2_BC_UIRQ3 Indicates a Minor Frame has completed (INTERNAL)

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

101

AceXtreme C SDK. Once the hold-off time expires, the newly activated Bus Controller
will start issuing commands on the bus. The hold-off time can be specified for each
RT with each RT having its own unique hold-off time.

3.3.1.7.1 Enabling /Disable Dynamic Bus Controller

Dynamic Bus Controller (DBC) support can be enabled with the function
acexBCDbcEnable(). This function requires the LDN.

S16BIT nResult;

/* Enable Bus Controller Dynamic BC.. */
nResult = acexBCDbcEnable(0); /* LDN */
if(nResult)
 printf(“acexBCDbcEnable Error: Code %d\n”,nResult);

Code Example 48. Enable/Disbale DBC Support

The AceXtreme C SDK has a function to disable Dynamic Bus Controller called
acexBCDbcDisable(). This function requires the LDN of the device to disable the
DBC.

3.3.1.7.2 Inactive BC

In order for a Multi-Function AceXtreme device in MRT mode to accept control of the
data bus, the RT must have an inactive BC configured. An inactive BC, allows the
user to configure messages, and frames while leaving the BC inactive when the card
is put into the Run state. To create an inactive BC on the card in MRT mode, the
ACEX_BC_INACTIVE_BC option must be specified in aceBCConfigure().

3.3.1.7.3 Inactive RT

When the Bus Controller is running and has an RT address assigned to it, the RT
address maybe inactive. To create an inactive RT for the Bus Controller, the function
acexMRTEnableRT() must be used and the parameter ACE_RT_OPT_INACTIVE
must be used.

3.3.1.8 1553 Traffic Replay

The AceXtreme Multi-Function boards support Bus Replay of recorded data. To use
Replay the boards can be initialized by passing ACE_MODE_ALL into a call to
aceInitialize(). To enable replay, the functions acexBCConfigureReplay(),
acexBCStartReplay(),and acexBCGetStatusReplay() can be used after a call to

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

102

aceInitialize(). Monitor functionality can also be used by configuring the MT-I monitor
with the aceMTIConfigure() function and utilizing the other MT-I function calls. For
more on MT-I mode see section 3.3.2.

3.3.1.8.1 Replay Configuration

To configure the replay options on an AceXtreme Multi-Function board, the function
acexBCConfigureReplay() can be used. The default replay behavior is to enable BC
command replay, all RTs will be emulated for Replay, and unknown errors will be
replayed. These options can be changed with the parameters passed into
acexBCConfigureReplay().

The function acexBCConfigureReplay() allows the user to specify if the RT address
is being replayed by the AceXtreme Multi-Function card or is an RT external to the
card. RTs can be emulated by passing in a bit pattern as the second parameter to
acexBCConfigureReplay(). A value of 0 will enable the RT for emulation on the
AceXtreme Multi-Function card, while a 1 will turn off replay and allow an external
device to control the RT address. If RT 5 was desired to be an external RT while the
other RT address were to be emulated on the AceXtreme card and value of
0x00000010 would be passed into the second parameter. The other parameters in
acexBCConfigureReplay() allow the user to select if unknown messages, and errors
(when AES is enabled) should be replayed on the bus, along with the Time Tag
resolution.

The user may specify a channel ID to replay by using the u16ChannelID parameter if
ACEX_BC_REPLAY_OPT_CHAN_ID_ENA is specified in the options field of
acexBCConfigureReplay(). The last parameter passed into
acexBCConfigureReplay() are the Replay options. The replay options can be logical
OR’ed together and are used to enable replaying a specific channel ID, and to use
triggers to start or stop replay.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

103

S16BIT nResult;

/* Configure BC/RT replay mode */
nResult = acexBCConfigureReplay(
 0, /* LDN */
 0x0, /* bitmask of RTs to disable during replay */
 FALSE, /* Enable the replay of unknown messages */
 FALSE, /* Disable replay of BC commands (unused) */
 FALSE, /* Enable the Replay of 1553 errors */
 ACE_TT_1US, /* Time Tag Resolution set to 1 µsec */
 0, /* Ch ID to Replay, Ignored by default */
 0); /* Options */

if(nResult)
 printf(“acexBCConfigureReplay Error: Code %d\n”, nResult);

Code Example 49. Configuring Replay

3.3.1.8.2 Start/Stop Replay

After configuring the AceXtreme Multi-Function device for Replay with the function
acexBCConfigureReplay(), a call to acexBCStartReplay() will begin transmission of
recorded messages. The function acexBCStartReplay() requires the logical device
number of the device, a chapter 10 file, the channel ID and how many times to replay
the chapter 10 file. Please see section 3.3.2.7 for more information on creating and
working with Chapter 10 files.

S16BIT nResult;
S32BIT wLoopCount = 1;
U16BIT wChannelID = 10;

/* Start Replaying Replay.ch10 file*/
nResult = acexBCStartReplay(
 0, /* LDN */
 “Replay.ch10”, /* Path/filename to replay file */
 wChannelId, /* Chapter 10 channel to replay */
 wLoopCount); /* Number of times to replay file */

if(nResult)
 printf(“acexBCStartReplay Error: Code %d\n”, nResult);

Code Example 50. Starting Replay

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

104

The function aceBCStop() can be used to stop replay activity. There are functions to
pause and restart replay activity, they are acexBCPause(), and acexBCContinue().

3.3.1.8.3 Pause / Continue Replay

Pausing replay with the function acexBCPause() will temporarily pause all replay
activity until acexBCContinue() is called. Once acexBCContinue() is called, replay
will activity will begin with the next message in the Chapter 10 replay file.

S16BIT nResult = 0;
S16BIT DevNum = 0;

/* Pause Replay */
nResult = acexBCPause(DevNum);

if(nResult)
 printf(“acexBCPause Error: Code %d\n”, nResult);

sleep(100);

/* Restart or Continue replay */
nResult = acexBCContinue(DevNum);

if(nResult)
 printf(“acexBCContinue Error: Code %d\n”, nResult);

Code Example 51. Pausing / Continue Replay

3.3.1.8.4 Replay Activity Status

The status of the replay engine on a AceXtreme Multi-Function card can be retrieved
by calling acexBCGetStatusReplay(). The function will return the following states
ACEX_BC_REPLAY_STATUS_RUN if the Replay is currently running,
ACEX_BC_REPLAY_STATUS_PAUSE if Replay has been paused with the
acexBCPause() function call, or ACEX_BC_REPLAY_STATUS_STOP when the
Replay file has reached the end of file and the number of times to repeat.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

105

S16BIT nResult;
U32BIT dwStatus;

/* Get Replay status */
nResult = acexBCGetStatusReplay(
 0, /* LDN */
 &dwStatus); /* Status of Replay, Busy, idle, or stopped */

 if(nResult)
 printf(“acexBCGetStatusReplay Error: Code %d\n”,nResult);

Code Example 52. Retrieve Replay Status

3.3.1.9 BC Intermessage Routines

The Multi-Function AceXtreme boards have support for Intermessage routines (IMRs).
IMRs are a set of tasks executed in real-time after any configured 1553 message.
Multiple IMRS can be grouped together for one message, however caution must be
taken in order to avoid conflicts between the IMRS and sufficient intermessage gap
time must be available for proper operation. IMRs are used by using the opcode
ACE_OPCODE_IMR and the frame type OTHER. The usage of IMRs will be
described in Section 0.

3.3.1.9.1 BC Intermessage Routine Types

Intermessage routines can be categorized into several groups, IMRs used for
message response, IMRs used for discrete and triggers, IMRs used for retry schemes,
and IMR control of message execution. There is one other IMR called
ACEX_BC_IMR_IMMEDIATE which is used when the IMR is to be executed
immediately, regardless of messaging.

Table 36. Intermessage Routines
Intermessage Routine Description

ACEX_BC_IMR_IMMEDIATE Specified Routines will be executed Immediately
independent of messaging

Discretes and Triggers
ACEX_BC_IMR_SET_DISCRETE_X Sets discrete output to a logic 1. X is 1 – 4.

ACEX_BC_IMR_RST_DISCRETE_X Resets discrete output to a logic 0. X is 1 – 4.

ACEX_BC_IMR_WAIT_FOR_INPUT_TRIG BC operation will be paused until an external BC trigger
signal is detected.

Message Response
ACEX_BC_IMR_NO_RESP_BOTH_BUS Disables the current RT’s transmitter on both buses.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

106

Table 36. Intermessage Routines
Intermessage Routine Description

ACEX_BC_IMR_SET_SRQ_IN_STATUS Indicates the service request bit in the status of the last RT to
respond will be set.

ACEX_BC_IMR_RST_SRQ_IN_STATUS Indicates the service request bit in the status of the last RT to
respond will be cleared.

ACEX_BC_IMR_SET_TFG_IN_STATUS Indicates the terminal flag bit in the status of the last RT to
respond will be set.

ACEX_BC_IMR_RST_TFG_IN_STATUS Indicates the terminal flag bit in the status of the last RT to
respond will be cleared.

ACEX_BC_IMR_SET_BSY_IN_STATUS Busy bit in the status of the last RT to respond will be set.

ACEX_BC_IMR_RST_BSY_IN_STATUS Indicates the busy bit in the status of the last RT to respond
will be cleared.

BC Retry Schemes

ACEX_BC_IMR_RETRY_SAME_ALT_REMAIN_ALT
The next message will be retried on the same bus and then
on the alternate bus and remain on the alternated bus,
overriding any current message retry settings.

ACEX_BC_IMR_RETRY_ALT_REMAIN_ALT The next message will be retried and remain on the alternate
bus overriding any current message retry settings.

ACEX_BC_IMR_RETRY_ALT The next message will be retried on the alternate bus
overriding any current message retry settings.

ACEX_BC_IMR_RETRY_SAME The next message will be retried on the same bus overriding
any current message retry settings.

BC Message Execution

ACEX_BC_IMR_EXEC_NEXT_MSG_ONCE The next message will be executed once and skipped each
additional attempt.

ACEX_BC_IMR_SKIP_NEXT_MSG_ONCE The next message will be skipped once and executed each
additional attempt.

ACEX_BC_IMR_SKIP_NEXT_MSG The next message will always be skipped.

ACEX_BC_IMR_BREAK Bus Controller will pause execution after the routines have
been executed.

Data Blocks Size

ACEX_BC_IMR_BLK_DATA_SIZE_X
Block Data Size, a data block increment will occur in
conjunction with the next message. Valid Block sizes are
64, 128, 256, 512, 1K, 2K, 4K, 8K, 16K and 32K words.

The IMRS listed in Table 39 may be “Logically OR’ed” together to form multiple
intermessage actions with the exception of the
ACEX_BC_IMR_SKIP_NEXT_MSG_ONCE, ACEX_BC_IMR_SKIP_NEXT_MSG,
ACEX_BC_IMR_EXEC_NEXT_MSG_ONCE and the Retry IMRS.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

107

3.3.1.9.2 Usage

In order to use IMRs in BC mode, the opcode ACE_OPCODE_IMR must be used with
the IMRs listed in Table 39. The opcode for the ACE_OPCODE_IMR must appear in
the frame before an opcode linked to a message in order for the opcode to run once
the message has completed.

It is recommended to use the “OTHER” frame in constructing a message that will use
IMRS. The “Other” frame will be a subset of the minor frame which contains the IMR,
a message and a call to return from the “Other” frame. The follow of frames, from
Major to Minor to Other can be seen in Figure 21.

Figure 21. IMR Frame Sequence

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

108

/* Create IMR opcode that will use msg block */
nResult = aceBCOpCodeCreate(
 0, /* LDN */
 OP1 /* Opcode ID */
 ACE_OPCODE_IMR, /* Opcode for IMR */
 ACE_CNDTST_ALWAYS, /* Always operate IMR */
 ACEX_BC_IMR_RETRY_ALT, /* IMR Retry on alt bus */
 0, /* Reserved */
 0); /* Reserved */

/* Create XEQ opcode that Msg 1 */
nResult = aceBCOpCodeCreate(
 0, /* LDN */
 OP2 /* Opcode ID */
 ACE_OPCODE_XEQ, /* Opcode for Execute */
 ACE_CNDTST_ALWAYS, /* Always operate XEQ */
 MSG1, /* Message one */
 0, /* Reserved */
 0); /* Reserved */

/* Create RTN opcode */
nResult = aceBCOpCodeCreate(
 0, /* LDN
*/
 OP3 /* Opcode ID
*/
 ACE_OPCODE_RTN, /* Opcode for Return
*/
 ACE_CNDTST_ALWAYS, /* Always operate IMR
*/
 0, /* Reserved
*/
 0, /* Reserved
*/
 0); /* Reserved
*/

/* Create OTHER FRAME opcode */
nResult = aceBCOpCodeCreate(
 0, /* LDN
*/
 OP4 /* Opcode ID
*/
 ACE_OPCODE_CAL, /* Opcode for Call
*/
 ACE_CNDTST_ALWAYS, /* Always operate IMR
*/
 OTHER1, /* Other Frame ID
*/
 0, /* Reserved

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

109

*/
 0); /* Reserved
*/

/* Create IMR Message Other Frame */
 aOpCodes[0] = OP1; /* IMR Opcode */
 aOpCodes[1] = OP2; /* XEQ Opcode */
 aOpCodes[2] = OP3; /* RTN Opcode */

nResult = aceBCFrameCreate(
 0, /* LDN */
 OTHER1 /* Frame ID */
 ACE_FRAME_OTHER, /* Frame Type */
 aOpCodes, /* Opcode list */
 3, /* # of Opcodes in list
*/
 0, /* Reserved
*/
 0); /* Reserved
*/
/* Create MINOR FRAME opcode */
nResult = aceBCOpCodeCreate(
 0, /* LDN
*/
 OP5 /* Opcode ID
*/
 ACE_OPCODE_CAL, /* Opcode for Call
*/
 ACE_CNDTST_ALWAYS, /* Always operate IMR
*/
 MNR1, /* Major Frame ID
*/
 0, /* Reserved
*/
 0); /* Reserved
*/

aOpCodes[0] = OP4; /* Load Minor Frame
*/

/* Create Minor Frame */
nResult = aceBCFrameCreate(
 0, /* LDN
*/
 MNR1 /* Frame ID
*/
 ACE_FRAME_MINOR, /* Frame Type
*/
 aOpCodes, /* Opcode list

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

110

*/
 1, /* # of Opcodes in list
*/
 0, /* Reserved
*/
 0); /* Reserved
*/

aOpCodes[0] = OP5; /* Load Major Frame
*/

/* Create Major Frame */
nResult = aceBCFrameCreate(
 0, /* LDN
*/
 MJR /* Frame ID
*/
 ACE_FRAME_MAJOR, /* Frame Type
*/
 aOpCodes, /* Opcode list
*/
 1, /* # of Opcodes in list
*/
 100, /* Frame time
*/
 0); /* Reserved
*/

Code Example 53. Configure BC IMRs

3.3.1.9.3 IMR and Triggers

BC intermessage routines may also generate or be generated by external triggers
through the discrete I/O pins on the Multi-Function AceXtreme board. The function
acexBCImrTrigSelect() to link a discrete I/O pin to the IMRs using the discrete IO
pins or the wait for trigger IMR. The function requires the LDN, and the discrete pin
number (0 – 15 depending on the number of discrete on the Multi-Function AceXtreme
board).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

111

S16BIT nResult;

/* BC IMR Trigger Select */
nResult = acexBCImrTrigSelect(0, /* LDN */
 DIO 1); /* discrete 1 */

if(nResult)
 printf(“acexBCImrTrigSelect Error: Code %d\n”,nResult);

Code Example 54. Configure Discrete to IMR

3.3.2 IRIG-106 Chapter 10 Monitor (ACE_MODE_MTI)

The IRIG-106 Chapter 10 Monitor (MT-I) provides a definitive solution for systems
requiring IRIG-106 Chapter 10 support. In addition, DDC hardware supporting MT-I
adds Direct Memory Access (DMA) and event performance enhancements to
maximize monitor data throughput. Please note that this mode is only available for the
E²MA and AceXtreme family of DDC devices.

Note: Due to the numerous performance improvements of MT-I mode as compared
to Classic Monitor mode (MT), it is recommended that this mode be used for
1553 Monitor Applications using DDC E²MA and AceXtreme Hardware and
requiring high performance. For existing or retrofit Applications requiring
Classic Monitor API Support, see Section 3.3.3.

3.3.2.1 What is IRIG-106 Chapter 10?

IRIG-106 is a comprehensive telemetry standard to ensure interoperability in
aeronautical telemetry application at United States Military RCC member ranges.
IRIG-106 is developed and maintained by the Telemetry Group of the Range
Commanders Council. Chapter 10 of the IRIG-106 document addresses the Digital
On-Board Recorder Standard, which defines the operation and interfaces for digital
flight data recorders. This new file format standard supports MIL-STD-1553, as well as
other telemetry protocols (PCM, ARINC 429).

For more information on IRIG-106 Chapter 10, visit http://www.irig106.org/.

3.3.2.2 Theory of Operation

The MT-I Monitor creates IRIG-106 Chapter Data packets, including a packet header
and trailer, containing any monitored 1553 traffic (after filter is applied, see Section
3.3.2.4). The MT-I Data Packet is compliant to MIL-STD-1553, Format 1 (MIL-STD-
1553B) defined in RCC IRIG-106 Chapter 10 version 2004.

http://www.ddc-web.com/
http://www.irig106.org/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

112

MT-I Data Packets consist of 3 parts: Packet Header, Packet Body and Packet Trailer.
The size of each Data packet is variable based on the number of messages contained
within (For controlling packet size, see Packet Generation Events, Section 3.3.2.2.4).

Table 37. MT-I General Data Packet Format
PACKET SYNC PATTERN

PACKET HEADER

CHANNEL ID

PACKET LENGTH

DATA LENGTH

HEADER VERSION

SEQUENCE NUMBER

PACKET FLAGS

DATA TYPE

RELATIVE TIME COUNTER

HEADER CHECKSUM

CHANNEL SPECIFIC DATA

PACKET BODY

INTRA-PACKET TIME STAMP 1

INTRA-PACKET DATA HEADER 1

DATA 1
•
•
•

INTRA-PACKET TIME STAMP n

INTRA-PACKET DATA HEADER n

DATA

DATA CHECK SUM PACKET TRAILER

3.3.2.2.1 Packet Header

The MT-I Packet Header is included at the start of every MT-I Packet. The Header
always contains the same 10 fields, which are defined in sections 3.3.2.2.1.1 through
3.3.2.2.1.10. For more detailed information on IRIG-106 Chapter 10 Packet Headers,
see section 3.3.2.1.

3.3.2.2.1.1 PACKET SYNC PATTERN (2 Bytes)

Packet Sync Pattern (2 Bytes) contains a static sync value for every packet. The
Packet Sync Pattern value shall be 0xEB25.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

113

3.3.2.2.1.2 CHANNEL ID (2 Bytes)

Channel ID (2 Bytes) contains a value representing the Packet Channel ID. All
channels in a system must have a unique value (data channels). Channel value
0x0000 is reserved, and is used to insert computer-generated messages into the
composite data stream. Channel values 0x0001 through 0xFFFF are available.

Note: The Channel ID can be set via the aceMTIConfigure() function. See Section
3.3.2.3.

3.3.2.2.1.3 PACKET LENGTH (4 Bytes)

Packet Length (4 Bytes) contains a value representing the length of the entire packet.
The value shall be in bytes and is always a multiple of four (bits 1 and 0 shall always
be zero). This Packet Length includes the Packet Header, Packet Secondary Header
(if enabled), Channel Specific Data, Intra-Packet Data Headers, Data, Filler, and Data
Checksum.

3.3.2.2.1.4 DATA LENGTH (4 Bytes)

Data Length (4 Bytes) contains a value representing the length within the packet. This
value shall be represented in bytes. Data length includes Channel Specific Data, Intra-
Packet Data Headers, Intra-Packet Time Stamp, and Data but does not include Filler
and Data Checksum.

3.3.2.2.1.5 HEADER VERSION (1 Byte)

MT-I mode will always supply a fixed Header Version value of 0x02, indicating that the
TG-78 header format is being used.

3.3.2.2.1.6 SEQUENCE NUMBER (1 Byte)

Sequence Number (1 Byte) contains a value representing the packet sequence
number for each Channel ID. This is simply a counter that increments by n + 0x01 to
0xFF for every packet transferred from a particular channel and is not required to start
at 0x00 for the first occurrence of a packet for the Channel ID.

3.3.2.2.1.7 PACKET FLAGS (1 Byte)

MT-I mode will always supply a fixed Packet Flags value of x00, which translates to
the following:

• Packet Secondary Header is not present (Bit 7)

• Intra-Packet Time Stamp Source is the Packet Header 48-Bit Relative Time
Counter (Bit 6)

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

114

• No Relative Time Counter sync error (Bit 5)

• No Data Overflow (Bit 4)

• No Packet Secondary Header Format (Bits 3-2)

• No Data Checksum Present (Bits 1-0)

3.3.2.2.1.8 DATA TYPE (1 Byte)

Data Type (1 Byte) contains a value representing the type and format of the data. All
values not used to define a data type are reserved for future data type growth:

MT-I mode supports 2 Data Types: MIL-STD-1553B (Format 1 (0x19)) and Time Data
(Format 1 (0x11)). This value will change depending on whether you have received a
1553 Data Packet (Section 3.3.2.6.1) or a Time Data Packet (Section 3.3.2.6.2).

3.3.2.2.1.9 RELATIVE TIME COUNTER

Relative Time Counter (6 Bytes) contains a value representing the Relative Time
Counter. This is a free-running 10 MHz binary counter represented by 48 bits common
to all data channels. The counter shall be derived from an internal crystal oscillator
and shall remain free running during each recording session. The applicable data bit
to which the 48-bit value applies, unless defined in each data type section, shall
correspond to the first bit of the data in the packet body.

Note: The Relative Time Counter can be an external 10MHz source on supported
DDC hardware. The Clock source and resolution (Internal only) can be set via
the aceSetTimeTagRes() function.

Special Note: When operating the following DDC cards, the ARINC Time Tag
selection will override the Relative Time counter selection in the 1553 section.
If IRIG is selected on the 1553 and the ARINC then selects the global 48-bit
counter, the 1553 will be modified to use the global 48-bit counter as well.
Cards affected: BU-65590/91Ux, BU-65590F/Mx, and BU-65590Cx.

3.3.2.2.1.10 HEADER CHECKSUM (2 Bytes)

Header Checksum (2 Bytes) contains a value representing a 16 bit arithmetic sum of
all 16-bit words in the header excluding the Header Checksum Word.

3.3.2.2.2 1553 Data Packet Body

The MT-I Packet Body consists of a Channel Specific Data Section, followed by 1 or
more Message Data Sections. The number of 1553 messages in each Packet is
controlled by the Packet Generation Events (see Section 3.3.2.2.4). Each Message

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

115

Data Section consists of 3 sections; an Intra-Packet Time Stamp, Intra-Packet Data
Header and the actual monitored 1553 message data (Command, Data, Status).

Table 38. MT-I 1553 Complete Data Packet
PACKET HEADER

CHANNEL SPECIFIC DATA

INTRA-PACKET TIME STAMP FOR MESSAGE 1

INTRA-PACKET DATA HEADER FOR MESSAGE 1

MESSAGE 1

INTRA-PACKET TIME STAMP FOR MESSAGE 2

INTRA-PACKET DATA HEADER FOR MESSAGE 2

MESSAGE 2

•
•
•

INTRA-PACKET TIME STAMP FOR MESSAGE n

INTRA-PACKET DATA HEADER FOR MESSAGE n

MESSAGE n

PACKET HEADER

3.3.2.2.2.1 1553 Data Channel Specific Data

IRIG-106 Chapter 10 defines a “Channel Specific Data” section, which has a unique
definition for each protocol supported by the standard. MT-I supports the MIL-STD-
1553B, Format 1 protocol (0x19). The 1553B Channel Specific Data is included
before any monitored messages and is decoded as shown in Figure 22.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

116

MSB LSB
31 15 0
Bits [31:30]

TTB
Bits [29:24]
RESERVED

Bits [23:0]
MSGCOUNT

• Message Count (MSGCOUNT). (bits 23-0) indicate the binary value of the number of messages
included in the packet. An integral number of complete messages will be in each packet.
• Reserved. (bits 29-24) are reserved.
• Time Tag Bits (TTB). (bits 31-30) indicate which bit of the MIL-STD-1553 message the Intra-Packet
Header time tags.
 00 = Last bit of the last word of the message
 01 = First bit of the first word of the message
 10 = Last bit of the first (command) word of the message <——— Supported E²MA Option
 11 = 0xE Reserved

Figure 22. MT-I 1553 Data Packet – Channel Specific Data

3.3.2.2.2.2 1553 Data Intra-Packet Time Stamp (8 Bytes)

Each 1553 Message will be stamped with an Intra-Packet Time Stamp, marking the
relative reception time of the message. The value posted will contain a 48-bit Relative
Time Counter (plus 16 high-order zero bits).

3.3.2.2.2.3 1553 Data Intra-Packet Data Header

Each 1553 Message that is monitored will contain an Intra-Packet Data Header. This
header is used to identify size, timing and status of the 1553 message, including any
observed errors.

Table 39. MT-I 1553 Data Packet - Intra-Packet Data Header
Word
Offset

MSB LSB

15 0

+2 BLOCK STATUS WORD [15:0]

+1 GAP TIMES WORD [15:0]

+0 LENGTH WORD [15:0]

The Block Status Word (BSW) is used to identify the health of the message. It can be
used to identify erroneous message.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

117

MSB LSB
15 7 0

Bits
[15:14]

R

Bit
[13]
BID

Bit
[12]
ME

Bit
[11]
RR

Bit
[10]
FE

Bit
[9]
TM

Bit
[8]
R

Bit
[7]
R

Bit
[6]
R

Bit
[5]
LE

Bit
[4]
SE

Bit
[3]
WE

Bit
[2]
R

Bit
[1]
R

Bit
[0]
R

• Reserved. (Bits 15-14) are reserved

• Bus ID (BID). (Bit 13) indicates the bus ID for the message.
 0 = Message was from Channel A
 1 = Message was from Channel B
• Message Error (ME). (Bit 12) indicates a message error was encountered.
 0 = No message error
 1 = Message error
• RT to RT Transfer (RR). (Bit 11) indicates an RT to RT transfer: message begins with two command
 words.
 0 = No RT to RT transfer
 1 = RT to RT transfer
• Format Error (FE). (Bit 10) indicates a format error.
 0 = No format error
 1 = Format error
• Response Time Out. (Bit 9) indicates a response time out has occurred.
 0 = No response time out
 1 = Response time out
• Reserved. (Bit 8-6) are reserved
• Word Count Error (LE). (Bit 5) indicates a word count error has occurred.
 0 = No word count error
 1 = Word count error
• Sync Type Error (SE). (Bit 4) indicates an incorrect sync type occurred.
 0 = No sync type error
 1 = Sync type error
• Invalid Word Error (WE). (Bit 3) indicates an invalid word error has occurred.
 0 = No invalid word error
 1 = Invalid word error
• Reserved. (Bit 2-0) are reserved

Figure 23. MT-I 1553 Data Packet – Block Status Word

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

118

3.3.2.2.2.4 1553 Message Data Section

Table 40. MT-I 1553 Data Packet – Data Portion
(1553 Command / Data / Status Words)

COMMAND WORD

COMMAND, STATUS, OR DATA WORD

DATA OR STATUS WORD

•
•
•

DATA OR STATUS WORD

3.3.2.2.3 Packet Trailer

MT-I mode supplies a Filler Packet trailer of 8 bytes. All bytes are set to 0x00.

3.3.2.2.4 Packet Generation Events

The MT-I architecture allows the user to define numerous events to trigger MT-I
Packet generation. Each event can be used independently or in conjunction with each
other to make sure Data Packets are generated at the desired rate, size, and
conditions. If any of the interrupt event conditions are met, the MT-I engine will
generate a valid Data Packet with the monitored 1553 data collected at the time of the
event. The events will then be reset to collect a new Data Packet. Event conditions
can be configured via the aceMTIConfigure() function (see Section 3.3.2.3).

3.3.2.2.4.1 MTI_OVERFLOW_INT

This event condition will trigger a Data Packet to be generated if the DDC hardware
has overflowed (i.e. reached the maximum amount of monitored data without being
depleted).

3.3.2.2.4.2 MTI_HOST_INT

This event condition will trigger a Data Packet to be generated if asynchronously
requested by the host Application (via aceMTIInitiateHostIrq()).

3.3.2.2.4.3 MTI_TIME_MSG_TRIG_INT

This event condition will trigger a Data Packet to be generated if a user-defined time
value has expired since the reception of the last 1553 message.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

119

3.3.2.2.4.4 MTI_TIME_INT

This event condition will trigger a Data Packet to be generated if a user-defined time
value has expired.

3.3.2.2.4.5 MTI_NUM_MSGS

This event condition will trigger a Data Packet to be generated if a user-defined
number of 1553 messages have been monitored.

3.3.2.2.4.6 MTI_NUM_WORDS

This event condition will trigger a Data Packet to be generated if a user-defined
number of words (command and data) have been monitored.

Figure 24. MT-I Data Packet Generation – Interrupt Events

3.3.2.3 Configuration

The AceXtreme C SDK’s MT-I Monitor has numerous configuration options that
should be addressed before any monitoring is attempted. Configuration is

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

120

accomplished via the aceMTIConfigure() function and is typically called after
aceInitialize().

Table 41. MT-I Configuration Parameters
Variable Description Valid Options or Range

u32DevBufByteSize Size of DDC hardware memory (bytes)
allocated for MT-I monitored data

MTI_DEVBUF_SIZE_128K = 128 KB
MTI_DEVBUF_SIZE_256K = 256 KB
MTI_DEVBUF_SIZE_512K = 512 KB
MTI_DEVBUF_SIZE_1M = 1 MB

u32NumBufBlks Number of memory blocks allocated for
chapter 10 data packets Target Host Memory Dependent

u32BufBlkByteSize Bytes allocated for MT-I Data Packet buffer Target Host Memory Dependent

fZeroCopyEnable Enable Zero-Copy (Needs to be supported
by target Operating System)

TRUE = Enable Zero-Copy
FALSE = Disable Zero-Copy

u32IrqDataLen

Interrupt Event Option
(MTI_NUM_WORDS): Number of data
words necessary to generate a MT-I Data
Packet

System Dependent

u32IrqMsgCnt
Interrupt Event Option (MTI_NUM_MSGS):
Number of messages necessary to generate
a MT-I Data Packet

System Dependent

u16IrqTimeInterval

Interrupt Event Option
(MTI_TIME_MSG_TRIG_INT)
(MTI_TIME_INT)
Time Limit (µs) necessary to generate a MT-
I Data Packet

System Dependent

u32IntConditions Interrupt Events enabled to generate MT-I
Data Packet

MTI_OVERFLOW_INT = Generate packet after
DDC Hardware Overflow
MTI_HOST_INT = Generate packet after Host
Request
MTI_TIME_MSG_TRIG_INT = Generate Packet
after time limit reached, triggered by 1553 message
MTI_TIME_INT = Generate Packet after time limit
reached
MTI_NUM_MSGS = Generate Packet after
receiving “X” 1553 Messages
MTI_NUM_WORDS = Generate Packet after
receiving “X” words

u16Ch10ChnlId IRIG-106 Chapter 10 assigned Channel ID
for this device 0 - 65535

u8HdrVer Reserved for Future Use Reserved (0)

u8RelAbsTime Reserved for Future Use Reserved (0)

u8Ch10Checksum Reserved for Future Use Reserved (0)

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

121

The following options can be “logically OR’ed” into the 14th parameter (dwOptions) of
aceMTIConfigure().

Table 42. MT-I Configuration Options
Options Description

ACE_MT_OPT_1553A_MC Enable 1553A Mode Code Support

ACE_MT_OPT_BCST_DIS Disable Broadcast Address (RT 31)

ACE_MTI_OPT_RTBUSY_DISABLE Busy/Illegal bit and data valid format disable

ACE_MTI_OPT_EOM_TT_ENABLE Enables EOM for TT

ACE_MTI_OPT_ERR_MON_ENA MT-I Error monitor mode

ACE_MTI_OPT_REPLAY_MON_ENA MT-I Replay Monitor Mode enabled

ACE_MTI_OPT_DDC_DATA_TYPE Use DDC custom data types for MT-I, MT-IE and
MTR packets

3.3.2.4 Message Filtering

The MT-I Monitor can be setup to filter messages based on RT address, Transmit or
Receive command, and RT Subaddress. By default, the MT-I Monitor is configured to
monitor all 1553 bus messages. Filtering out (disabling) messages is accomplished
via the aceMTDisableRTFilter() function. For more information, see the
aceMTEnableRTFilter() and aceMTDisableRTFilter() sections.

S16BIT nResult;

/* Disable RT5 TX SA19 */
nResult = aceMTDisableRTFilter(
 0, /* LDN */
 5, /* RT Address to Filter */
 ACE_MT_FILTER_TX, /* RT Type to Filter */
 ACE_MT_FILTER_SA19); /* Subaddress(es) to Filter */

 if(nResult)
 printf(“aceMTDisableRTFilter Error: Code %d\n”, nResult);

Code Example 55. Filtering Out (Disabling) RT5 Transmit SubAddress 19

Note: To read back the current Filter status of all of a particular RT, TX/RX,
Subaddress combination, use the aceMTGetRTFilter() function.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

122

3.3.2.5 Activating the MT-I Monitor

Once the MT-I Monitor is configured and the RT Filtering has been setup, the Monitor
is ready to begin storing 1553 bus traffic.

3.3.2.5.1 Starting and Stopping

The MT-I Monitor can be started and stopped dynamically by the user. Starting and
Stopping is accomplished by the aceMTIStart() and aceMTIStop() functions.

Note: By Stopping the Monitor with aceMTIStop(), any traffic that has not been
consumed by the user will be discarded. To temporarily pause monitoring
without discarding data, see Section 3.3.2.5.2

S16BIT nResult;

/* Start the MT-I Monitor */
nResult = aceMTIStart(0); /* LDN */

 if(nResult)
 printf(“aceMTIStart Error: Code %d\n”, nResult);

Code Example 56. Starting the MT-I Monitor

S16BIT nResult;

/* Stop the MT-I Monitor */
nResult = aceMTIStop(0); /* LDN */

 if(nResult)
 printf(“aceMTIStop Error: Code %d\n”, nResult);

Code Example 57. Stopping the MT-I Monitor

3.3.2.5.2 Continue and Pause

The aceMTIPause() function will temporarily pause the monitoring of bus traffic,
leaving all unconsumed data intact. After pausing, bus monitoring can be restarted
using the aceMTIContinue() function.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

123

3.3.2.6 Consuming Data

Once the MT-I engine has been configured and the monitor is started, the user may
begin to consume monitored data. The MT-I interface is event-driven and contains
some blocking options to limit device polling.

3.3.2.6.1 Getting 1553 Data Packets

Available MT-I 1553 Data Packets can be consumed by the user via the
aceMTIGetCh10DataPkt() function. For a non-zero copy configuration, the user must
supply an allocated MTI_CH10_DATA_PKT buffer able to hold the largest achievable
packet size (depending on Packet Generation options). In addition, the function can
block until the packet is available.

S16BIT nResult;
MTI_CH10_DATA_PKT* pPkr;

/* Get a 1553 Data Packet */
pPkt = (MTI_CH10_DATA_PKT*) malloc(0x1000);
nResult = aceMTIGetCh10DataPkt(
 0, /* LDN */
 &pPkt, /* MT-I Packet Storage */
 -1); /* Wait forever (block) */

if(nResult)
 printf(“aceMTIGetCh10DataPkt Error: Code %d\n”, nResult);

Code Example 58. Getting a MT-I 1553 Data Packet

Note: If the target Operating System supports zero-copy and it is enabled via
aceMTIConfigure(), the buffer supplied to aceMTIGetCh10DataPkt() will be
allocated by the AceXtreme C SDK and does not need to be allocated by the
user.

3.3.2.6.1.1 Blocking Options

The Third Parameter (Timeout) of aceMTIGetCh10DataPkt() contains the timeout
value. Depending on the value supplied, the function will return immediately, block
until data is received, or block until a user-supplied timeout occurs. This functionality
allows applications to poll or be event-driven depending on needs.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

124

Table 43. Getting 1553 Data Packets: Blocking Options
“Timeout” Value Observed Blocking Behavior of aceMTIGetCh10DataPacket()

-1 Function will block (not return) until a valid MT-I 1553 Data Packet is available (NOTE:
Completion of a packet is based on one or more Packet Generation Events occurring).

0 Function will return immediately with or without an MT-I 1553 Data Packet

1 – 65535 (n) Function will return as soon as a valid MT-I 1553 Data Packet is available or after “n
milliseconds”, which ever comes first.

3.3.2.6.1.2 Using the Host-Initiated IRQ

One of the Packet Generation Event Options (MTI_HOST_INT) is a Host-Generated IRQ
event. This option allows the user to cause an MT-I 1553 Data Packet to generate at their
request. To initiate the Host IRQ, use the aceMTIInitiateHostIrq() function.

Note: In order to use the Host-Initiated IRQ event, the MTI_HOST_INT event
option must be enabled. See section 3.3.2.3 for configuration information.

3.3.2.6.2 Getting Time Data Packets (TDP)

Supporting DDC hardware will create Time Data Packets (TDP’s) under MT-I mode. A
Time Data Packet contains information from an internal or external time source (including
IRIG-B) and will be generated at a frequency of 1 Hz. The TDP Packet Header and Trailer
are in the same format as 1553 Data Packets, refer to Sections 3.3.2.2.1 and 3.3.2.2.3 for
more information.

Table 44. MT-I Time Data Packet Format
PACKET HEADER

CHANNEL SPECIFIC DATA

TIME DATA

PACKET TRAILER

The Packet Header is identical to the Packet Header described in Section 3.3.2.2.1.
Please refer to this section for more information.

3.3.2.6.2.1 TDP Channel Specific Data

Since the Time Data Packets is treated as a separate protocol, IRIG-106 Chapter 10
defines a unique “Channel Specific Data” portion, which is defined as follows.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

125

MSB LSB
31 15 0

Bits [31:12]
RESERVED

Bits [11:8]
DATE

Bits [7:4]
FMT

Bits [3:0]
SRC

• Time Source (SRC). (bits 3-0) indicates the source of the time in the payload of each time packet.
 0x0 = Internal (Time derived from the Clock in the Recorder)
 0x1 = External (Time derived from a Clock not in the Recorder)
 0x2 = Internal from RMM (Internal Time derived from the Clock in the RMM)
 0x3 = 0xE Reserved
 0xF = None
• Time Format (FMT). (bits 7-4) indicate the Time Data Packet format. All bit patterns not used to define a
 time format type are reserved for future data type growth.
 0x0 = IRIG-B <——— Supported E²MA Option
 0x1 = IRIG-A
 0x2 = IRIG-G
 0x3 = Internal Real time clock
 0x4 = UTC Time from GPS
 0x5 = Native GPS Time
 0x6 though 0xE = Reserved
 0xF = None (time packet payload invalid)
• Date Format (DATE). (bits 11-8) indicate the Date format. All bit patterns not used to define a date
 format type are reserved for future growth.
 Bits 11-10: Reserved

 Bit 9: Indicates Date Format

 0 = IRIG day available <——— Supported E²MA Option
 1 = Month and Year available

 Bit 8: Indicates if this is a leap year

 0 = Not a leap year
 1 = Is a leap year

• Reserved. (bits 31-12) are reserved.

Figure 25. MT-I Time Data Packet – Channel Specific Data

3.3.2.6.2.2 TDP Time Data

After the Channel Specific Data word, the time data words are inserted in the packet in
Binary Coded Decimal (BCD) Day format as shown below.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

126

Table 45. BCD Day Format
Word
Offset 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Sn Tmn

+1 RSVD(00) THn Hn 0 TMn Mn

 HDn Dn

Table 46. MT-I Time Data Packet - Time Data
Code Description Code Description
Tmn Tens of milliseconds TDn Tens of days

Hmn Hundreds of milliseconds HDn Hundreds of days

Sn Units of seconds On Units of months

TSn Tens of seconds Ton Tens of months

Mn Units of minutes Yn Units of years

TMn Tens of Minutes Tyn Tens of years

Hn Units of hours Hyn Hundreds of years

THn Tens of hours Oyn Thousands of years

Dn Units of days 0 Always zero

3.3.2.6.2.3 Packet Trailer

MT-I mode supplies a Filler Packet trailer of 8 bytes. All bytes are set to 0x00.

3.3.2.6.2.4 Enabling TDPs

Once Time Data Packets are enabled, the AceXtreme C SDK will generate a new
packet every second (1HZ rate).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

127

S16BIT nResult;

/* Enable TDPs */
nResult = aceMTICh10TimePktEnable(
 0, /* LDN */
 TRUE); /* Enable TDP’s */

if(nResult)
 printf(“aceMTICh10TimePktEnable Error: %d\n”,nResult);

Code Example 59. Enabling Time Data Packets

3.3.2.6.2.5 Consuming Time Data Packets (TDP’s)

Available MT-I 1553 Time Data Packets can be consumed by the user via the
aceMTIGetCh10TimePkt() function. For a non-zero copy configuration, the user must
supply an allocated MTI_CH10_TIME_PKT buffer able to hold the TDP. In addition,
the function can block until a TDP packet is available.

Note: A TDP will be available every second (1 Hz rate).

S16BIT nResult;
MTI_CH10_TIME_PKT* pPkr;

/* Get a Time Data Packet */
pPkt = (MTI_CH10_TIME_PKT*) malloc(0x1000);
nResult = aceMTIGetCh10TimePkt(
 0, /* LDN */
 &pPkt, /* TDP Packet Storage */
 -1); /* Wait forever (block) */

if(nResult)
 printf(“aceMTIGetCh10TimePkt Error: Code %d\n”, nResult);

Code Example 60. Getting a MT-I 1553 Time Data Packet (TDP)

3.3.2.6.2.6 Blocking Options

The Third Parameter (Timeout) of aceMTIGetCh10TimePkt() contains the timeout
value. Depending on the value supplied, the function will return immediately, block
until data is received, or block until a user-supplied timeout occurs. This functionality
allows applications to poll or be event-driven depending on needs.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

128

Table 47. Getting Time Data Packets - Blocking Options
“Timeout” Value Observed Blocking Behavior of aceMTIGetCh10DataPacket()

-1 Function will block (not return) until a valid MT-I 1553 Data Packet is available
(Note: Completion of a packet is based on one or more Packet Generation Events occurring).

0 Function will return immediately with or without an MT-I 1553 Data Packet

1 – 65535 (n) Function will return as soon as a valid MT-I 1553 Data Packet is available or after “n
milliseconds”, whichever comes first.

3.3.2.7 Chapter 10 File Access

The AceXtreme C SDK has functions allowing the user File IO access. These
functions allow the user to save MT-I packets to an IRIG Chapter 10 file. This file can
be used in ACE_MODE_ALL mode for replay. There is also a function allowing the
user to read packets from the IRIG Chapter 10 file.

3.3.2.7.1 File open

The function acexMTICh10FileOpen() is used to open a Chapter 10 capture file for
read / write access. A call to acexMTICh10FileOpen() will return pointer to a Chapter
10 file handle. Parameters passed into the function are the Chapter 10 file name
and path, the access mode (MTI_CH10_FILE_READ or MTI_CH10_FILE_WRITE), a
pointer to the TMATS header, and the length of the TMATS header in bytes.

If the file does not exist an empty file will be created. If the file is opened for write
access and does exists, the contents of the file will be erased and it will be treated as
a new empty file. If a TMATS head packet is provided, the header will be saved as
the first packet in the file.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

129

PMTI_CH10_FILE_HANDLE pCh10FileHandle;
S16BIT nResult;

/* Open CH10 File */
nResult = aceMTICh10FileOpen(
 &pCh10FileHandle, /* Pointer to CH10 File Handle */
 “Replay.ch10”, /* Replay file path\name */
 MTI_CH10_FILE_WRITE, /* read or written to file */
 NULL, /* Pointer to TMATS header */
 0); /* Length of TMATS header */

if(nResult)
 printf(“aceMTICh10FileOpen Error: Code %d\n”,nResult);

Code Example 61. Open MT-I File with Write Access

3.3.2.7.2 File Close

Once all user access to the chapter 10 file has been completed, the handle to the
open file must be closed. The handle can be closed by calling
acexMTICh10FileClose().

PMTI_CH10_FILE_HANDLE pCh10FileHandle;
S16BIT nResult;

/* Close CH10 File */
nResult = aceMTICh10FileClose(
 &pCh10FileHandle); /* Pointer to CH10 File Handle */

if(nResult)
 printf(“aceMTICh10FileClose Error: Code %d\n”,nResult);

Code Example 62. Open MT-I File

3.3.2.7.3 File Read

The acexMTICh10FileRead() function is used to read the current of next Packet in
the Chapter 10 file. The function requires the handle (pCh10FileHandle) to the
Chapter 10 file to be passed into the call to acexMTICh10FileRead(). The next
parameter (u8PacketReadType) specifies which packet to read from the file, either the
current packet (MTI_CH10_FILE_READ_CURRENT_PACKET) or the next packet
(MTI_CH10_FILE_READ_NEXT_PACKET) in the chapter 10 file. The next parameter
(pDataPacket) is a pointer where the packet from the chapter 10 file will be stored and

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

130

returned to the user. This parameter may be set to NULL if reading only the packet
header. The last parameter passed into acexMTICh10FileRead() is the packet length
in bytes (excluding the header).

PMTI_CH10_FILE_HANDLE pCh10FileHandle;
S16BIT nResult;

/* Read next packet from File. */
nResult = aceMTICh10FileRead(
 &pCh10FileHandle, /* Pointer to File Handle */
 MTI_CH10FILE_READ_NEXT_PACKET, /* Read the next packet. */
 pMtiCh10Header, /* Pointer to File Handle */
 pDataPacket, /* Pointer to packet data */
 U32DataPacketLen, /* Length of data packet */

if(nResult)
 printf(“aceMTICh10FileRead Error: Code %d\n”,nResult);

Code Example 63. Read Packet from File

3.3.2.7.4 File Write

The acexMTICh10FileWrite() function is used to write a Packet to the Chapter 10 file.
The function requires the handle (pCh10FileHandle) to the Chapter 10 file to be
passed into the call to acexMTICh10FileWrite(). The next parameter (pPacket) is a
pointer to valid packet data buffer. The last parameter passed into
acexMTICh10FileWrite() is the packet length in bytes (excluding the header).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

131

PMTI_CH10_FILE_HANDLE pCh10FileHandle;
MTI_CH10_DATA_PKT* pPacket = NULL;
S16BIT nResult;

/* Get packet. */
nResult = aceMTIGetCh10DataPkt(
 0, /* LDN */
 &pPacket, /* Pointer to packet */
 10); /* Timeout value in milliseconds */
if(nResult)
 printf(“aceMTIGetCh10DataPkt Error: Code %d\n”,nResult);

/* write packet to File. */
nResult = aceMTICh10FileWrite(
 &pCh10FileHandle, /* Pointer to File Handle */
 pPacket, /* Pointer to packet */
 pPacket->u32PktLength); /* Length of packet */

if(nResult)
 printf(“aceMTICh10FileWrite Error: Code %d\n”,nResult);

Code Example 64. Write Packet to File

3.3.2.7.5 Offset

The acexMTICh10FileGetOffset() function is used to get the current offset of a
packet from the beginning of the file. The acexMTICh10FileGetOffset() can only be
called on files opened for reading. The function acexMTICh10FileGetOffset() can be
used with acexMTICh10FileSetOffset(). The offset will always point to the beginning
of a packet. Both functions require the handle to the Chapter 10 file and a Signed 64
bit value used for the offset.

If the offset is set to an invalid location such as, the middle of a packet, the read
function will fail and return an error. It is recommend to only use the values returned
by acexMTICh10FileGetOffset() when attempting to set the offset via the call to
acexMTICh10FileSetOffset().

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

132

PMTI_CH10_FILE_HANDLE pCh10FileHandle;
S64BIT pOffset
S16BIT nResult;

/* Get the current offset of Ch10 file. */
nResult = aceMTICh10GetOffset(
 &pCh10FileHandle, /* Pointer to File Handle */
 &pOffset); /* Offset of file. */

if(nResult)
 printf(“aceMTICh10GetOffset Error: Code %d\n”,nResult);

Code Example 65. Get File Offset

PMTI_CH10_FILE_HANDLE pCh10FileHandle;
S64BIT pOffset
S16BIT nResult;

/* Set the offset for the CH10 File. */
nResult = aceMTICh10SetOffset(
 &pCh10FileHandle, /* Pointer to File Handle */
 pOffset); /* Offset into file. */

if(nResult)
 printf(“aceMTICh10SetOffset Error: Code %d\n”,nResult);

Code Example 66. Set File Offset

3.3.3 Classic Monitor (ACE_MODE_MT)

The AceXtreme C SDK Classic Monitor provides a flexible interface that allows
selective monitoring of 1553 messages based on RT Address, T/R, and Subaddress
with very little host processor intervention. This mode recreates all
command/response messages on the 1553 bus on channels A and B, and stores
them on DDC hardware memory based on a user programmable filter (RT Address,
T/R, and Subaddress). This monitor can be used as a monitor alone or in a combined
RT/Monitor mode (see Section 3.3.6.2).

Note: Classic Monitor support should only be used for existing applications or if the
target DDC hardware is not of the E²MA or AceXtreme Family. New designs
using E²MA or AceXtreme hardware should use MT-I mode (see Section
3.3.2).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

133

The Classic Monitor hardware uses a command stack to store 1553 command
information and a data stack to store 1553 data words. Depending on the application,
these stacks can vary in size (see Section 3.3.3.1). In addition, interrupt events can be
used to notify the user when the stacks are filling up.

Figure 26. Monitor Command and Data Stacks Relationship

3.3.3.1 Configuration

The AceXtreme C SDK’s Classic Monitor has numerous configuration options that
should be addressed before any monitoring is attempted. Configuration is
accomplished via the aceMTConfigure() function and is typically called after
aceInitialize().

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

134

Variable Description Valid Options

wMTStkType Stack type to use for command and
data stacks

ACE_MT_SINGLESTK = Single-Buffered Stack (default)
ACE_MT_DOUBLESTK = Double-Buffered Stack

wCmdStkSize Size (in words) of the command stack

ACE_MT_CMDSTK_256 -> 256 words
ACE_MT_CMDSTK_1K -> 1K words
ACE_MT_CMDSTK_4K -> 4K words (default)
ACE_MT_CMDSTK_16K -> 16K words

wDataStkSize Size (in words) of the data stack

ACE_MT_DATASTK_512 -> 512 words
ACE_MT_DATASTK_1K -> 1K words
ACE_MT_DATASTK_2K -> 2K words
ACE_MT_DATASTK_4K -> 4K words
ACE_MT_DATASTK_8K -> 8K words
ACE_MT_DATASTK_16K -> 16K words (default)
ACE_MT_DATASTK_32K -> 32K words
ACE_MT_DATASTK_64K -> 64K words

The following options can be “logically OR’ed” into the Fifth parameter of
aceMTConfigure().

Options Description
ACE_MT_OPT_1553A_MC Enable 1553A Mode Code Support

ACE_MT_OPT_BCST_DIS Disable Broadcast Address (RT 31)

3.3.3.2 Message Filtering

The Classic Monitor can be setup to filter messages based on RT address, Transmit
or Receive command, and RT Subaddress. By default, the Classic Monitor is
configured to monitor all 1553 bus messages. Filtering out (disabling) messages is
accomplished via theaceMTDisableRTFilter() function. For more information, see the
aceMTEnableRTFilter() and aceMTDisableRTFilter() sections.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

135

S16BIT nResult;

/* Disable RT5 TX SA19 */
nResult = aceMTDisableRTFilter(
 0, /* LDN */
 5, /* RT Address to Filter */
 ACE_MT_FILTER_TX, /* RT Type Filter */
 ACE_MT_FILTER_SA19); /* Subaddress(es) to Filter */

if(nResult)
 printf(“aceMTDisableRTFilter Error: Code %d\n”, nResult);

Code Example 67. Filtering Out (Disabling) RT5 Transmit SubAddress 19

Note: To read back the current Filter status of all of a particular RT, TX/RX,
Subaddress combination, use the aceMTGetRTFilter() function.

3.3.3.3 Activating the Monitor

Once the Classic Monitor is configured and the RT Filtering has been setup, the
Monitor is ready to begin storing 1553 bus traffic.

3.3.3.3.1 Starting and Stopping

The Classic Monitor can be started and stopped dynamically by the user. Starting and
Stopping is accomplished by the aceMTStart() and aceMTStop() functions.

Note: By stopping the Monitor with aceMTStop(), any traffic that has not been
consumed by the user will be discarded. To temporarily pause monitoring
without discarding data, see Section 3.3.3.3.2.

S16BIT nResult;

/* Start the MT Monitor */
nResult = aceMTStart(0); /* LDN */

if(nResult)
 printf(“aceMTStart Error: Code %d\n”, nResult);

Code Example 68. Starting the MT Monitor

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

136

S16BIT nResult;

/* Stop the MT Monitor */
nResult = aceMTStop(0); /* LDN */

if(nResult)
 printf(“aceMTStop Error: Code %d\n”, nResult);

Code Example 69. Stopping the MT Monitor

3.3.3.3.2 Continue and Pause

The aceMTPause() function will temporarily pause the monitoring of bus traffic,
leaving all unconsumed data intact. After pausing, bus monitoring can be restarted
using the aceMTContinue() function.

3.3.3.4 Consuming Data

The Classic Monitor supports two methods of consuming monitored data: Stack
Access and Host Buffer. Each method has particular advantages based on the user’s
Application needs.

3.3.3.4.1 Data via Host Buffer

The MT Host Buffer (HBUF) is a circular memory buffer resident on the host that
contains the log of all monitored messages in the order they appeared on the 1553
bus.

One advantage of using a Host Buffer is that all monitored messages are
automatically transferred to the HBUF by means of internally configured interrupt
events. This will make sure that monitored data is removed from DDC hardware and
placed into the Host Buffer before any data loss can occur.

Another advantage is that the size of the host buffer can be fairly large and can serve
as an elasticity buffer for applications that cannot consume data at a high rate.

3.3.3.4.1.1 Installing the Host Buffer

The Host Buffer should be installed before any traffic monitoring occurs.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

137

Note: The Host Buffer size should typically be 8-10 times larger than the maximum
capacity of the DDC hardware (MT Command Stack).

The following equation can be used to calculate the correct Host Buffer size:

[(CMD_STACK_SIZE / 4) * 40] * 8

S16BIT nResult;
#define CMD_STK_SIZE = 4096

/* Install the host buffer */
nResult = aceMTInstallHBuf(
 0, /* LDN */
 ((CMD_STK_SIZE/4)*40)*8); /* Host Buffer Size */

if(nResult)
 printf(“aceMTInstallHBuf Error: Code %d\n”, nResult);

Code Example 70. Installing the MT Host Buffer

3.3.3.4.1.2 Reading the Host Buffer

The Host Buffer architecture is designed to automatically remove monitored data from
the DDC hardware and place it into the host-allocated Host Buffer. It is the user’s
responsibility to read entries from the Host Buffer for consumption.

Messages can be read off the Host Buffer in two formats: Raw or Decoded.
Depending on which method is used, messages taken off the Host Buffer will be
returned in FIFO order or LIFO order.

3.3.3.4.1.2.1 RAW FORMAT

The Raw Format will return a U16BIT pointer to the binary data. Using this method
will also allow more than one message to be read off the Host Buffer at one time.
Each message will be fixed-length of 40 words and will use zero fill words for
messages not meeting the required word maximum. For example, if two messages
have been monitored, the binary data will be 80 words deep, with the second
message starting at offset 40.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

138

Table 48. MT Host Buffer Raw Format for One Message
Word MSB LSB

Bits 15 7 0
0 Block Status Word

1 Time Tag Word

2 Bit [15] EOM Bits [14:8]
Data Length (in Words)

Bits [7:0]
1553 Message Type

3 1553 Command Word

4 2nd 1553 Command Word (RT RT Transfers only)

5 RT Status Word

6 2nd RT Status Word (RTRT Transfers only)

7 Data Word 0

8 Data Word 1

n+6 Data Word n

Messages can be read from the Host Buffer in Raw Format using the
aceMTGetHBufMsgsRaw() function. The function will return up to “wBufferSize”
words or all messages, whichever is smaller. The “pdwMsgCount” pointer will inform
the user of the number of messages returned.

Note: Each message is a fixed length of 40 words.

S16BIT nResult;
U32BIT dwStkLost, dwHBufLost, dwMsgCount;
U16BIT wBuffer[400] = { 0x00000000 };

/* Get Raw Messages from the Host Buffer */
nResult = aceMTGetHBufMsgsRaw(
 0, /* LDN */
 wBuffer, /* Buffer Storage */
 400, /* Max Size of Buffer */
 &dwMsgCount, /* Number of Msgs copied */
 &dwStkLost, /* Messages lost on stack (if any) */
 &dwHBufLost); /* Messages lost on Hbuf (if any) */

if(nResult)
 printf(“aceMTGetHBufMsgsRaw Error: Code %d\n”, nResult);

Code Example 71. Reading Raw Data From the Host Buffer

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

139

3.3.3.4.1.2.2 DECODED FORMAT

The Decoded Format will read one message off the Host Buffer and decode it into a
MSGSTRUCT structure object. In addition, the user can decide whether to read the
oldest (next) or latest message and whether or not to remove (purge) the message
from the Host Buffer.

A Message can be read from the Host Buffer in Decoded Format using the
aceMTGetHBufMsgDecoded() function. The function will return one message
decoded into the “pMsg” MSGSTRUCT variable. The “wMsgLoc” variable is used to
define which message to read and whether or not to remove it from the Host Buffer.

Table 49. Host Buffer Message Location and Purge Options (wMsgLoc)
Option Description

ACE_MT_MSGLOC_NEXT_PURGE Reads next message and takes it off of the host buffer

ACE_MT_MSGLOC_NEXT_NPURGE Reads next message and leaves it on the host buffer

ACE_MT_MSGLOC_LATEST_PURGE Reads current message and takes it off of the host buffer

ACE_MT_MSGLOC_LATEST_NPURGE Reads current message and leaves it on the host buffer

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

140

/*Global (used for all modes) Message Structure for decoded 1553 msgs */
typedef struct MSGSTRUCT
{
 U16BIT wTYPE; /* Contains the msg type (see above) */
 U16BIT wBlkSts; /* Contains the block status word */
 U16BIT wTimeTag; /* Time Tag of message */
 U16BIT wCmdWrd1; /* First command word */
 U16BIT wCmdWrd2; /* Second command word (RT to RT) */
 U16BIT wCmdWrd1Flg; /* Is command word 1 valid? */
 U16BIT wCmdWrd2Flg; /* Is command word 2 valid? */
 U16BIT wStsWrd1; /* First status word */
 U16BIT wStsWrd2; /* Second status word */
 U16BIT wStsWrd1Flg; /* Is status word 1 valid? */
 U16BIT wStsWrd2Flg; /* Is status word 2 valid? */
 U16BIT wWordCount; /* Number of valid data words */
 U16BIT aDataWrds[32]; /* An array of data words */

/* The following are only applicable in BC mode */
 U16BIT wBCCtrlWrd; /* Contains the BC control word */
 U16BIT wBCGapTime; /* Message gap time word */
 U16BIT wBCLoopBack1; /* First looped back word */
 U16BIT wTimeTag2; /* wBCLoopBack2 is redefined as TimeTag2 */
 U16BIT wBCLoopback1Flg; /* Is loopback 1 valid? */
 U16BIT wTimeTag3; /* wBCLoopBack2Flg is redefined as TimeTag3 */
}MSGSTRUCT;

Figure 27. MT Host Buffer MSGSTRUCT Object Definition

S16BIT nResult;
U32BIT dwStkLost, dwHBufLost, dwMsgCount;
MSGSTRUCT sMsg;

/* Get a Decoded Message from the Host Buffer */
nResult = aceMTGetHBufMsgDecoded(
 0, /* LDN */
 &sMsg, /* Message storage */
 &dwMsgCount, /* Num of Msgs copied */
 &dwStkLost, /* Messages Lost (Stack) */
 &dwHBufLost, /* Messages Lost (Hbuf) */
 ACE_MT_MSGLOC_NEXT_PURGE); /* Purge messages */

if(nResult)
 printf(“aceMTGetHBufMsgDecoded Error: Code %d\n”, nResult);

Code Example 72. Reading a Decoded Message from the Host Buffer

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

141

3.3.3.4.2 Data via Stack

For Applications that have strict timing requirements and need quick access to 1553
data, the user can read monitored data directly off of the DDC hardware. This can be
accomplished using the aceMTGetStkMsgsRaw() and aceMTGetStkMsgDecoded()
functions.

3.3.3.4.2.1 Reading the Stack

The MT Stacks are the lowest level of data storage. It consists of a command stack
holding message/routing information and a data stack holding 1553 data words. The
stacks will store monitored data (after filtering, see Section 3.3.3.2) until full and will
then start overwriting the oldest data. It is the user’s responsibility to read entries from
the stacks before an overrun occurs.

Messages can be read off of the Stacks in two formats: Raw or Decoded. Depending
on which method is used, Messages taken off of the stacks will be returned in FIFO
order or LIFO order.

3.3.3.4.2.1.1 RAW FORMAT

The Raw Format will return a U16BIT pointer to the binary data. This method will also
allow more than one message to be read off the stacks at one time. Each message
will be fixed-length of 40 words and will use zero fill words for messages not required
the word maximum. For example, if two messages have been monitored, the binary
data will be 80 words deep, with the second message starting at offset 40.

Table 50. MT Raw Format for Message One
Word MSB LSB

Bits 15 7 0
0 Block Status Word

1 Time Tag Word

2 Bit [15] EOM Bits [14:8]
Data Length (in Words)

Bits [7:0]
1553 Message Type

3 1553 Command Word

4 2nd 1553 Command Word (RT RT Transfers only)

5 RT Status Word

6 2nd RT Status Word (RTRT Transfers only)

7 Data Word 0

8 Data Word 1

n+6 Data Word n

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

142

Messages can be read from the stacks in Raw Format using the
aceMTGetStkMsgsRaw() function. The function will return up to “wBufferSize” words
or all messages, whichever is smaller. The return value of the function will inform the
user of the number of messages returned or if an error occurred.

Note: Each message is a fixed length of 40 words.

S16BIT nResult;
U16BIT wBuffer[400] = { 0x00000000 };

/* Get Raw Messages from the Stacks */
nResult = aceMTGetStkMsgsRaw(
 0, /* LDN */
 wBuffer, /* Buffer storage */
 400, /* Max size of Buffer */
 ACE_MT_STKLOC_ACTIVE); /* Read active stack */

if(nResult)
 printf(“aceMTGetStkMsgsRaw() Error: Code %d\n”, nResult);

Code Example 73. Reading Raw Data From the Stacks

3.3.3.4.2.1.2 DECODED FORMAT

The Decoded Format will read one message off the Stacks and decode it into a
MSGSTRUCT structure object. In addition, the user can decide whether to read the
oldest (next) or latest message and whether or not to remove (purge) the message
from the Stacks.

A message can be read from the Stacks in Decoded Format using the
aceMTGetStkMsgDecoded() function. The function will return one message decoded
into the “pMsg” MSGSTRUCT variable. The “wMsgLoc” variable is used to define
which message to read and whether or not to remove it from the Host Buffer.

Table 51. Stacks Message Location and Purge Options (wMsgLoc)
Option Description

ACE_MT_MSGLOC_NEXT_PURGE Reads next message and takes it off of the host buffer

ACE_MT_MSGLOC_NEXT_NPURGE Reads next message and leaves it on the host buffer

ACE_MT_MSGLOC_LATEST_PURGE Reads current message and takes it off of the host buffer

ACE_MT_MSGLOC_LATEST_NPURGE Reads current message and leaves it on the host buffer

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

143

/*Global (used for all modes) Message Structure for decoded 1553 msgs */
typedef struct MSGSTRUCT
{
 U16BIT wTYPE; /* Contains the msg type (see above) */
 U16BIT wBlkSts; /* Contains the block status word */
 U16BIT wTimeTag; /* Time Tag of message */
 U16BIT wCmdWrd1; /* First command word */
 U16BIT wCmdWrd2; /* Second command word (RT to RT) */
 U16BIT wCmdWrd1Flg; /* Is command word 1 valid? */
 U16BIT wCmdWrd2Flg; /* Is command word 2 valid? */
 U16BIT wStsWrd1; /* First status word */
 U16BIT wStsWrd2; /* Second status word */
 U16BIT wStsWrd1Flg; /* Is status word 1 valid? */
 U16BIT wStsWrd2Flg; /* Is status word 2 valid? */
 U16BIT wWordCount; /* Number of valid data words */
 U16BIT aDataWrds[32]; /* An array of data words */

/* The following are only applicable in BC mode */
 U16BIT wBCCtrlWrd; /* Contains the BC control word */
 U16BIT wBCGapTime; /* Message gap time word */
 U16BIT wBCLoopBack1; /* First looped back word */
 U16BIT wTimeTag2; /*wBCLoopBack2 is redefined as TimeTag2 */
 U16BIT wBCLoopback1Flg; /* Is loopback 1 valid? */
 U16BIT wTimeTag3; /* wBCLoopBack2Flg is redefined as TimeTag3 */
}MSGSTRUCT;

Figure 28. MT Stack MSGSTRUCT Object Definition

S16BIT nResult;
MSGSTRUCT sMsg;

/* Get a Decoded Message from the Stacks */
nResult = aceMTGetStkMsgDecoded(
 0, /* LDN */
 &sMsg, /* Message Storage */
 ACE_MT_MSGLOC_NEXT_PURGE, /* Read and Purge */
 ACE_MT_STKLOC_ACTIVE); /* Read active stack */

if(nResult)
 printf(“aceMTGetStkMsgDecoded Error: Code %d\n”, nResult);

Code Example 74. Reading a Decoded Message from the Stacks

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

144

3.3.3.4.3 MT Block Status Word

The Block Status Word (BSW) is used to identify the health of the message. The BSW
contains information regarding the message, specifying whether the message is in
progress or has been completed, what channel the message was processed on, and
whether or not there were any errors in the message table. The MT Block status
word’s bits are defined in

Table 52. MT Block Status Word
Bit Description
15

(MSB)
EOM Set at the completion of a BC message, regardless of whether or not there were

any errors in the message.

14 SOM Set at the start of a BC message and cleared at the end of the message.

13 A/B CHANNEL This bit will be low if the message was processed on Channel A or high if the
message was processed on Channel B

12 ERROR FLAG If this bit is high, one or more of bits 10, 9, and/or 8 are also set high.

11 RT-RT FORMAT Is set when to indicate the message was an RT-to-RT command.

10 FORMAT ERROR If set, indicates the received portion of a message contained one or more
violations of the 1553 message validation criteria (sync, encoding, parity, bit
count, word count, etc.), or the RT's status word received from a responding RT
contained an incorrect RT address field.

9 NO RESPONSE TIMEOUT If set, indicates that an RT has either not responded or has responded later than
the BC No Response Timeout time.

8 GOOD DATA BLOCK TRANSFER Set to ‘1’ following completion of a valid (error-free) message.

7 DATA STACK ROLLOVER Indicates the current message results in the value of the Monitor Data Stack
Pointer rolling over from the bottom to the top of its range.

6 RESERVED Reserved for future use.

5 WORD COUNT ERROR Indicates the BC did not transmit the correct number of Data Words.

4 INCORRECT SYNC Indicates the BC transmitted a Command sync in a Data Word.

3 INVALID WORD Indicates the BC (or transmitting RT in an RT-to-RT transfer) transmitted with one
or more words containing one or more of the following error types: sync field
error, Manchester encoding error, parity error, and/or bit count error.

2 RT-RT GAP / SYNC ADDRESS
ERROR

This bit is set if the RT is the receiving RT for an RT-to-RT transfer and one or
more of the following occur:

1. The GAP CHECK ENABLED bit is set to logic "1" and the transmitting
RT responds with a response time of less than 4 μs.

2. There is an incorrect sync type or format error (encoding, bit count,
and/or parity error) in the transmitting RT Status Word.

3. The RT address field of the transmitting RT Status Word does not match
the RT address in the transmit Command Word.

1 RT-RT 2ND COMMAND ERROR If the device is the receiving RT for an RT-to-RT transfer, this bit set indicates
one or more of the following error conditions in the transmit Command Word:

1. T/R bit = logic “0”
2. Subaddress = 00000 or 11111
3. Same RT Address field as the receive Command Word.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

145

Table 52. MT Block Status Word
Bit Description
0

(LSB)
COMMAND WORD CONTENTS
ERROR

This bit indicates a received command word is not defined in accordance with
MIL-STD-1553B. This includes the following undefined Command Words:

1. BROADCAST DISABLED and the Command Word is a non-mode
code, broadcast, transmit command.

2. The OVERRIDE MODE T/R ERROR bit is logic "0" and a message
with a T/R bit of "0," a subaddress/mode field of 00000 or 11111 and a
mode code field between 00000 and 01111.

3. BROADCAST DISABLED and a mode code command that is not
permitted to broadcast (e.g.. Transmit status) is sent to the broadcast
address (11111).

3.3.3.4.4 Using Interrupt Events

Some applications may benefit from event notifications regarding the monitoring of
1553 traffic. The following events directly relate to the Classic Monitor (MT) mode of
operation. For information on how to configure events and callbacks, see Section
3.2.3.

Table 53. MT Interrupt Events
Event Description

ACE_IMR1_TT_ROVER (Bit 6) Indicates the Hardware Timetag has rolled over

ACE_IMR1_MT_DATASTK_ROVER (Bit 10) Indicates the MT Data Stack has rolled over

ACE_IMR1_MT_CMDSTK_ROVER (Bit 11) Indicates the MT Command Stack has rolled over

ACE_IMR2_MT_DSTK_50P_ROVER (Bit 22) Indicates the MT Data Stack has passed the 50% mark

ACE_IMR2_MT_CSTK_50P_ROVER (Bit 23) Indicates the MT Command Stack has passed the 50% mark

3.3.4 Remote Terminal (ACE_MODE_RT)

The AceXtreme C SDK Remote Terminal (RT) implements all of the MIL-STD-1553B
message formats and dual redundant mode codes for MIL-STD-1553B RT operation.
The RT performs comprehensive error checking, word and format validation, and
checks for various RT to RT transfer errors. One of the main features of the
AceXtreme C SDK RT is the choice of Data Block memory management schemes.
These include single buffering by subaddress, double buffering for individual receive
subaddresses, circular buffering by individual subaddresses and a global circular
buffering option for multiple (or all) subaddresses. Other features include a set of
interrupt conditions, internal command illegalization, programmable busy by
subaddress, and multiple options for time tagging.

The RT hardware uses a command stack to store 1553 command information and
Data Blocks to store 1553 data words. Depending on the application, the command
stack can be varied in size (see Section 3.3.4.1) and the Data Blocks can be

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

146

configured in numerous memory management schemes (see Section 3.3.4.3). The
SubAddress (SA) Mapping Table will determine which Data Block object is used for
any particular command word. In addition, interrupt events can be used to notify the
user when the stack and Data Blocks are filling up or have new data.

The AceXtreme devices support a Multi-RT mode. This mode allows for the use of
more than one RT on one channel. Multi-RT mode can be used by passing
ACE_MODE_MRT into aceInitialize().

Figure 29. RT Command Stack, SA Mapping Table and Data Blocks Relationship

3.3.4.1 Configuration

The AceXtreme C SDK s Remote Terminal has numerous configuration options that
should be addressed before the RT is brought online. Configuration is accomplished
via the aceRTConfigure() function and is typically called after aceInitialize().

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

147

Table 54. RT Configuration Parameters
Variable Description Valid Options

wCmdStkSize Size (in words) of the command stack ACE_RT_CMDSTK_256-> 256 words
ACE_RT_CMDSTK_512-> 512 words
ACE_RT_CMDSTK_1K-> 1K words
ACE_RT_CMDSTK_2K-> 2K words (default)

The following options can be “logically OR’ed” into the Third parameter (dwOptions) of
aceRTConfigure().

Table 55. RT Configuration Options
Options Description

ACE_RT_OPT_CLR_SREQ Sets the Clear Service Request bit 2 to a 1. This will clear a
service request after a tx vector word.

ACE_RT_OPT_LOAD_TT
With the reception of a Synchronize (with data) mode command,
this will cause the Data Word from the Synchronize message to
be loaded into the Hardware Time Tag Register.

ACE_RT_OPT_CLEAR_TT
With the reception of a Synchronize (without data) mode
command, this will cause the value of the Hardware Time Tag
Register to clear to 0x0000.

ACE_RT_OPT_OVR_DATA

This option affects the operation of the RT subaddress circular
buffer memory management scheme. The Lookup Table address
pointer will only be updated following a transmit message or
following a valid receive or broadcast message to the respective
Rx/Bcst subaddress. If this option is enabled, the Lookup Table
pointer will not be updated following an invalid receive or
broadcast message. In addition, an interrupt request for a circular
buffer rollover condition (if enabled) will only occur following the
end of a transmit message during which the last location in the
circular buffer has been read or following the end of a valid
receive or Broadcast message in which the last location in the
circular buffer has been written to.

ACE_RT_OPT_OVR_MBIT

Enabling this option will cause a mode code Command Word with
a T/R* bit of 0 and an MSB of the mode code field of 0 to be
considered a defined (reserved) mode Command Word. The DDC
hardware will respond to such a command and the Message Error
bit will not become set.

ACE_RT_OPT_ALT_STS
Enabling this option will cause all 11 RT Status Word bits to be
under control of the user via the aceRTStatusBitsSet() and
aceRTStatusBitsClear() functions.

ACE_RT_OPT_IL_RX_D
Enabling this option will cause the device to not store the received
data words if the DDC hardware device receives a receive
command that has been illegalized.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

148

Table 55. RT Configuration Options
Options Description

ACE_RT_OPT_BSY_RX_D

If a particular Command Word (broadcast, T/R* bit, subaddress)
has been programmed to be busy by means of the Busy lookup
table and the RT receives a receive command, the 1553 device
will respond with its Status Word with the Busy bit set and will not
store the received Data Words.
 See Section 0 on modifying the Busy Lookup Table.

ACE_RT_OPT_SET_RTFG

If enabled, the Terminal flag status word bit will also become set if
either a transmitter timeout (660.5 μs) condition had occurred or
the ACE RT had failed its loopback test for the previous non-
broadcast message. The loopback test is performed on all non-
broadcast messages processed by the RT. The received version
of all transmitted words is checked for validity (sync and data
encoding, bit count, parity) and correct sync type. In addition, a
16-bit comparison is performed on the received version of the last
word transmitted by the RT. If any of these checks or
comparisons do not verify, the loopback test is considered to have
failed.

ACE_RT_OPT_1553A_MC

This option causes the RT to consider only subaddress 0 to be a
mode code subaddress. Subaddress 31 is treated as a standard
non-mode code subaddress. In this configuration, the 1553
hardware will consider valid and respond only to mode code
commands containing no data words. In this configuration, the RT
will consider all mode commands followed by data words to be
invalid and will not respond. In addition the 1553 hardware will not
decode for the MIL-STD-1553B "Transmit Status" and "Transmit
Last Command" mode codes. As a result, the internal RT Status
Word Register will be updated as a result of these commands.

ACE_RT_OPT_MC_O_BSY

If a particular Command Word (broadcast, T/R* bit, subaddress)
has been programmed to be busy by means of the Busy Lookup
Table, the 1553 hardware will transmit its Status Word with its
BUSY bit set, followed by a single Data Word, in response to
either a Transmit Vector Word mode command or a Reserved
transmit mode command with data (transmit mode codes 10110
through 11111).

See Section 0 on modifying the Busy Lookup Table.

ACE_RT_OPT_BCST_DIS
The 1553 hardware will not recognize RT address 31 as the
broadcast address. In this instance, RT address 31 may be used
as a discrete RT address.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

149

3.3.4.1.1 Setting the RT Address

The DDC device’s RT address on the 1553 bus can come from two sources;
Externally via specific pins on the DDC hardware or programmatically (Internally) via
an API function. The aceRTSetAddrSource() function can be used to set the address
source. If the RT address is to be programmed by the user, the aceRTSetAddress()
function should be used.

Note: If using an “External” RT Address Source, the RT Address can be reached
via the aceRTRelatchAddr() function.

S16BIT nResult;
#define RT_ADDRESS 10

/* Set RT Address Source */
nResult = aceRTSetAddrSource(
 0, /* LDN */
 ACE_RT_INTERNAL_ADDR); /* Use Internal Address Src */

if(nResult)
 printf(“aceRTSetAddrSource Error: Code %d\n”, nResult);

/* Set RT Address Value */
nResult = aceRTSetAddress(
 0, /* LDN */
 RT_ADDRESS); /* Internal Address Value */

if(nResult)
 printf(“aceRTSetAddress Error: Code %d\n”, nResult);

Code Example 75. Setting the RT Address Source and Value

3.3.4.2 RT Lookup Tables

The AceXtreme C SDK RT architecture contains a number of lookup tables to store
specific user choices with regards to how the RT will respond on the 1553 bus. The
tables’ functions are described in Sections 0, 3.3.4.2.2, and 0, including information on
how to configure them.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

150

3.3.4.2.1 Busy Bit Table

The Busy Bit Table holds information on which subaddresses will respond with the
Busy Bit (Bit 3) set in the Status Word. The table is based on address (own address or
broadcast) and command direction (RT Transmit/Receive). By default, the Busy Bit
will be OFF for all subaddresses.

Note: Entries in the Busy Bit Lookup Table can be cleared and queried using the
aceRTBusyBitsTblClear() and aceRTBusyBitsTblStatus() functions.

Table 56. Busy Bit Lookup Table
Own Addr /
Broadcast

Command
Direction Bus Subaddresses

OWN (1) TX (1) Each binary bit corresponds to Subaddress
(i.e. 0x00000100 is Subaddress 8)

OWN (1) RX (0) Each binary bit corresponds to Subaddress
(i.e. 0x00000100 is Subaddress 8)

BCST (0) RX (0) Each binary bit corresponds to Subaddress
(i.e. 0x00000100 is Subaddress 8)

S16BIT nResult;

/* Set Busy Bit (OWN Address (1) , TX (1) , SA19) */
nResult = aceRTBusyBitsTblSet(
 0, /* LDN */
 1, /* Own Address (not BCAST) */
 1, /* Transmit Cmds */
 ACE_RT_SA19); /* Subaddress 19 */

if(nResult)
 printf(“aceRTBusyBitsTblSet Error: Code %d\n”, nResult);

Code Example 76. Setting the Busy Bit for all TRANSMIT Commands
to SA19 (“Own Addr”, TX, SA 19)

3.3.4.2.2 Status Word Table

The Status Word Table holds information on what bits are active (set) in the RT Status
Word. By default, the “Standard” 1553 Status Word is used allowing configuration of
optional Status Word bits. Alternatively, an “Alternate Status Word” can be defined
(See ACE_RT_OPT_ALT_STS option in aceRTConfigure()). Using the Alternate
Status word will allow the user to control bits 0-10 of the RT Status Word.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

151

Note: When using the “Standard” Status Word, some bits are internally set and
clear by the DDC Hardware and cannot be configured via the API.

Note: Entries in the Status Word Lookup Table can be cleared and queried using
the aceRTStatusBitsClear() and aceRTStatusBitsStatus() functions.

Table 57. Standard RT Status Word
BIT DESCRIPTION

15 (MSB) Remote Terminal Address Bit 4

14 Remote Terminal Address Bit 3

13 Remote Terminal Address Bit 2

12 Remote Terminal Address Bit 1

11 Remote Terminal Address Bit 0

10 Message Error

9 Instrumentation

8 Service Request

7 Reserved

6 Reserved

5 Reserved

4 Broadcast Command Received

3 Busy

2 Subsystem Flag

1 Dynamic Bus Control Acceptance

0 (LSB) Terminal Flag

S16BIT nResult;

/* Set Service Request Status Bit */
nResult = aceRTStatusBitsSet(
 0, /* LDN */
 ACE_RT_STSBIT_SREQ); /* Set “Service Reg” bit */

if(nResult)
 printf(“aceRTStatusBitsSet Error: Code %d\n”, nResult);

Code Example 77. Setting the “Service Request” Bit in the RT Status Word

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

152

3.3.4.2.3 Built-in-Test (BIT) Word Table

The BIT Word is maintained by the RT device to store advanced error information.
The internal contents of the BIT data word are provided to supplement the appropriate
bits already available in the RT Status Word. The BIT Word definition can be the
standard Internal BIT Data Word (default). Alternatively, the user can define a custom
BIT Word for unique applications.

Whether internal or external, the BIT Word can be read via the aceRTBITWrdRead()
function.

Table 58. Internal Built-in-Test (BIT) Data Word
BIT DESCRIPTION

15 (MSB) Transmitter Timeout

14 Loop Test Failure B

13 Loop Test Failure A

12 Handshake Failure

11 Transmitter Shutdown B

10 Transmitter Shutdown A

9 Terminal Flag Inhibited

8 BIT Test Fail

7 High Word Count

6 Low Word Count

5 Incorrect Sync Received

4 Parity/Manchester Error Received

3 RT-RT Gap/Sync/Address Error

2 RT-RT No Response Error

1 RT-RT 2nd Command Word Error

0 (LSB) Command Word Contents Error

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

153

S16BIT nResult;
U16BIT nBITWord;

/* Configure RT BIT Word */
nResult = aceRTBITWrdConfig(
 0, /* LDN */
 ACE_RT_BIT_INTERNAL, /* Use Internal BIT */
 0); /* Reserved */

if(nResult)
 printf(“aceRTBITWrdConfig Error: Code %d\n”, nResult);

/* Read RT BIT Word */
nResult = aceRTBITWrdRead(
 0, /* LDN */
 ACE_RT_BIT_INTERNAL, /* Read from Internal BIT */
 &nBITWord); /* Bit Word Storage */

if(nResult)
 printf(“aceRTBITWrdRead Error: Code %d\n”, nResult);

Code Example 78. Configure and Read the Internal BIT Word

Note: If using an “Externally Supplied” BIT Word, the function
aceRTBITWrdWrite() is used to set the BIT Word value.

3.3.4.3 RT Data Blocks

RT Data Blocks are used to store MIL-STD-1553 data words being received or to be
transmitted by the Remote Terminal. Once created, a RT Data Block can be
independently read or written to. In order to use an RT Data Block it must be linked to
a specific RT Subaddress. When a 1553 message involving that Subaddress is sent
on the bus, the RT Engine will place or pull data from the linked RT Data Block.

3.3.4.3.1 RT Data Block Types

RT Data Blocks come in many different types and sizes for use in different
applications. Each type deals with 1553 data differently and may require additional
control. For information on reading RT Data Blocks, see Section 3.3.4.6.1.

The AceXtreme C SDK provides a number of memory management schemes for RT
Data Block Objects. The choice of scheme is fully programmable on a
transmit/receive/broadcast basis. Schemes available include a single message mode,
a circular buffer mode to support bulk data transfers and a double buffering mode for
individual receive subaddresses to ensure data consistency. Circular buffers may be
allocated on an individual transmit and/or receive subaddress basis. In addition, there

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

154

is a global circular buffer option, by which data words received to any subset of
subaddresses (or all subaddresses) may be stored to a single circular buffer.

Note: Creation (Allocation) of RT Data Blocks may be limited based on DDC
hardware memory.

Table 59. RT Data Block Types
RT Data Block Type Description

ACE_RT_DBLK_SINGLE Single-Buffered Data Block (32 Words)

ACE_RT_DBLK_DOUBLE Double-Buffered Data Block (64 Words)

ACE_RT_DBLK_C_128 Circular-Buffered Data Block (128 Words)

ACE_RT_DBLK_C_256 Circular-Buffered Data Block (256 Words)

ACE_RT_DBLK_C_512 Circular-Buffered Data Block (512 Words)

ACE_RT_DBLK_C_1K Circular-Buffered Data Block (1K Words)

ACE_RT_DBLK_C_2K Circular-Buffered Data Block (2K Words)

ACE_RT_DBLK_C_4K Circular-Buffered Data Block (4K Words)

ACE_RT_DBLK_C_8K Circular-Buffered Data Block (8K Words)

ACE_RT_DBLK_GBL_C_128 Global Circular-Buffered Data Block (128 Words)

ACE_RT_DBLK_GBL_C_256 Global Circular-Buffered Data Block (256 Words)

ACE_RT_DBLK_GBL_C_512 Global Circular-Buffered Data Block (512 Words)

ACE_RT_DBLK_GBL_C_1K Global Circular-Buffered Data Block (1K Words)

ACE_RT_DBLK_GBL_C_2K Global Circular-Buffered Data Block (2K Words)

ACE_RT_DBLK_GBL_C_4K Global Circular-Buffered Data Block (4K Words)

ACE_RT_DBLK_GBL_C_8K Global Circular-Buffered Data Block (8K Words)

3.3.4.3.1.1 Single-Buffered RT Data Block

Single-Buffered RT Data Blocks allocate a 32-word buffer for 1553 data. This Data
Block type can be used for all RT Transmit, Receive, and Broadcast commands.
Based on the SA Mapping Table, any 1553 data involving that Subaddress will be
stored in the destined RT Data Block.

Note: If a new 1553 Message destined for a Single-Buffered Data Block is received
before data is consumed by the user, the data will be automatically
overwritten.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

155

Figure 30. Single-Buffer RT Data Block Storage

3.3.4.3.1.2 Double-Buffered RT Data Block

Double-Buffered RT Data Blocks allocate two 32-word buffers for 1553 data. This
Data Block type can be used for all RT receive and Broadcast commands. Based on
the SA Mapping Table, any 1553 data involving that Subaddress will be stored in the
two contiguous RT Data Blocks in an alternating fashion defined as follows.

One of the 32-word buffers will be designated as the active RT Data Block while the
other will be considered inactive. The data accompanying the next receive command
to that subaddress will be stored in the active Data Block. Upon completion of the
message (if valid), the DDC Hardware will automatically switch the active and inactive
blocks for that subaddress. This means that the latest, valid, complete data block is
always readily available to the user.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

156

Figure 31. Double-Buffered RT Data Block Storage

3.3.4.3.1.3 Circular-Buffered RT Data Blocks

Circular-Buffered RT Data Blocks allocate a contiguous buffer that will store 1553
data. When the buffer is filled up, the DDC Hardware will jump back to the start of the
buffer, thus making it circular. This Data Block type can be used for all RT Transmit,
Receive, and Broadcast commands. Based on the SA Mapping Table, any 1553 data
involving that Subaddress will be stored in the next contiguous location in the Circular
Buffer. Circular Buffers can be created in the following lengths: 128, 256, 512, 1K, 2K,
4K, 8K words.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

157

Figure 32. Circular-Buffered RT Data Block Storage

3.3.4.3.1.4 Global Circular-Buffered RT Data Block

The final RT Data Block type is the Global Circular-Buffered RT Data Block. This type
is unique, in that only one of this type can be created per Remote Terminal (device).
This buffer operates in the same fashion as standard Circular-Buffered Data Blocks
(see Section 3.3.4.3.1.3), except for one key difference: the Global Circular-Buffered
RT Data Block can be linked to more than one Subaddress. This allows one
contiguous buffer to store 1553 data for an arbitrary group of transmit, receive and
broadcast messages. The Global Circular-Buffered RT Data Block can be created in
the following lengths: 128, 256, 512, 1K, 2K, 4K, 8K words.

3.3.4.3.2 Creating an RT Data Block

Once an RT Data Block Type has been chosen, the RT Data Block can be simply
created using the aceRTDataBlkCreate() function. If the initial data is available, it can
be placed into the data block.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

158

S16BIT nResult;
#define RTDBLK1 0x0001
U16BIT wBuffer[32] =
 { 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444,
 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444,
 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444,
 0x1111,0x2222,0x3333,0x4444,0x1111,0x2222,0x3333,0x4444
 };

/* Create an RT Data Block */
nResult = aceRTDataBlkCreate(
 0, /* LDN */
 RTDBLK1, /* Data Block OUID to assign */
 ACE_RT_DBLK_SINGLE, /* Use Single-Buffering */
 wBuffer, /* Initial Data */
 32); /* Size of Initial Data */

if(nResult)
 printf(“aceRTDatBlkCreate Error: Code %d\n”, nResult);

Code Example 79. Creating a Single-Buffered RT Data Block

3.3.4.3.3 Mapping an RT Data Block to a RT Subaddress

Once an RT Data Block (see Section 3.3.4.3.2) has been created, it needs to be
linked to an RT Subaddress to identify which 1553 message data will be stored in
which RT Data Blocks. Except for the Global Circular-Buffered RT Data Block (Section
3.3.4.3.1.4), only one Data Block can be linked to each Subaddress/Message Type
combination. Applicable Message Types are ACE_RT_MSGTYPE_RX (Receive),
ACE_RT_MSGTYPE_TX (Transmit), and ACE_RT_MSGTYPE_BCST (Broadcast).

3.3.4.4 Subaddress Interrupt Options

The Fifth Parameter of aceRTDataBlkMapToSA() defines interrupt options for this
Subaddress/Message Type combination. The following options can be “logically
OR’ed” into the Third parameter (wIrqOptions) of aceRTDataBlkMapToSA(). See
Section 3.2.3 on how to capture Device Interrupt Events.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

159

Interrupt Option Description (if Enabled)
ACE_RT_DBLK_EOM_IRQ The ACE_IMR1_RT_SUBADDR_EOM Device Interrupt Event will be

generated when this Data Block receives 1553 message data.

ACE_RT_DBLK_CIRC_IRQ The ACE_IMR1_RT_CIRCBUF_ROVER Device Interrupt Event will be
generated when this Circular-Buffered Data Block rolls over (100%).
The ACE_IMR2_RT_CIRC_50P_ROVER Device Interrupt Event will be
generated when this Circular-Buffered Data Block reaches 50%.

Note: If the Sixth Parameter of aceRTDataBlkMapToSA() is TRUE, the specified

Message Type/ Subaddress combination will be marked “Legal” in the
Command Legalization Table (see Section 3.3.4.7).

S16BIT nResult;
#define RTDBLK1 0x0001

/* Map RTDBLK1 to SA 19 */
nResult = aceRTDataBlkMapToSA(
 0, /* LDN */
 RTDBLK1, /* Data Block OUID to map */
 19, /* Subaddress to map */
 ACE_RT_MSGTYPE_RX | /* Map for RX Messages */
 ACE_RT_MSGTYPE_TX, /* Map for TX Messages */
 0, /* Interrupt Mask */
 TRUE); /* “Legalize” above commands */

if(nResult)
 printf(“aceRTDatBlkMapToSA Error: Code %d\n”, nResult);

Code Example 80. Mapping RTDBLK1 to TX ad RX messages for Subaddress 19

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

160

3.3.4.5 Activating the Remote Terminal

Once the Remote Terminal is configured and the RT Lookup Tables have been setup,
the RT is ready to begin responding to 1553 bus traffic.

3.3.4.5.1.1 Starting and Stopping

The Remote Terminal can be started and stopped dynamically by the user. Starting
and Stopping is accomplished by the aceRTStart() and aceRTStop() functions.

Note: By stopping the Remote Terminal with aceRTStop(), any traffic that has not
been consumed by the user will be discarded.

S16BIT nResult;

/* Start the Remote Terminal */
nResult = aceRTStart(0); /* LDN */

if(nResult)
 printf(“aceRTStart Error: Code %d\n”, nResult);

Code Example 81. Starting the Remote Terminal (RT)

S16BIT nResult;

/* Stop the Remote Terminal (RT) */
nResult = aceRTStop(0); /* LDN */

if(nResult)
 printf(“aceRTStop Error: Code %d\n”, nResult);

Code Example 82. Stopping the Remote Terminal (RT)

3.3.4.6 Consuming Data

The Remote Terminal supports two methods of consuming monitored data: Command
Stack/Data Block Access and Host Buffer. Each method has particular advantages
based on the user’s Application needs.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

161

3.3.4.6.1 Data via Command Stack

For Applications that have strict timing requirements and need quick access to 1553
RT data, the user can read 1553 messages directly off of the DDC hardware. This can
be accomplished using the aceRTGetStkMsgsRaw() and
aceRTGetStkMsgDecoded() functions.

3.3.4.6.1.1 Reading the Stack

The RT Command Stack is the lowest level of data storage. It consists of command
stack holding message/routing information with a link to an RT Data Block holding
1553 data words. The stack will store “Legal” 1553 command data until full and then
will start overwriting the oldest data. It is the user’s responsibility to read entries from
the Command Stack before an overrun occurs.

Note: The Stack Access functions aceRTGetStkMsgsRaw() and
aceRTGetStkMsgDecoded() will return 1553 command information, as well
as 1553 data words.

Messages can be read off of the Command Stack in two formats: Raw or Decoded.
Depending on which method is used, Messages taken off the stack will be returned in
FIFO order or LIFO order.

3.3.4.6.1.1.1 RAW FORMAT

The Raw Format will return a U16BIT pointer to the binary data. Using this method will
also allow more than one message to be read off the stack at one time. Each
message will be fixed-length of 36 words and will use zero fill words for messages not
meeting the required word maximum. For example, if two messages have been
monitored, the binary data will be 72 words deep, with the second message starting at
offset 36.

Table 60. RT Command Stack Raw Format for One Message
Word MSB LSB

Bits 15 7 0
0 Block Status Word

1 Time Tag Word

2 Bit [15] EOM Bits [14:8]
Data Length (in Words)

Bits [7:0]
1553 Message Type

3 1553 Command Word

4 Data Word 0

5 Data Word 1

n+4 Data Word n

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

162

Messages can be read from the RT Command stack in Raw Format using the
aceRTGetStkMsgsRaw() function. The function will return up to “wBufferSize” words
or all messages, whichever is smaller. The Return Value of the function will inform
the user of the number of messages returned or if an error occurred.

Note: Each message is a fixed length of 36 words.

S16BIT nResult;
U16BIT wBuffer[400] = { 0x00000000 };

/* Get Raw Messages from the RT Command Stack */
nResult = aceRTGetStkMsgsRaw(
 0, /* LDN */
 wBuffer, /* Buffer Storage */
 400); /* Max Size of Buffer */

if(nResult)
 printf(“aceRTGetStkMsgsRaw() Error: Code %d\n”, nResult);

Code Example 83. Reading Raw Data from the RT Command Stack

3.3.4.6.1.1.2 DECODED FORMAT

The Decoded Format will read one message off of the RT Command Stack and
decode it into a MSGSTRUCT structure object. In addition, the user can decide
whether to read the oldest (next) or latest message and whether or not to remove
(purge) the message from the Stack.

A Message can be read from the Command Stack in Decoded Format using the
aceRTGetStkMsgDecoded() function. The function will return one message decoded
into the “pMsg” MSGSTRUCT variable. The “wMsgLoc” variable is used to define
which message to read and whether or not to remove it from the Stack.

Stack Message Location and Purge Options (wMsgLoc)
ACE_MT_MSGLOC_NEXT_PURGE Reads next message and takes it off of the stack

ACE_MT_MSGLOC_NEXT_NPURGE Reads next message and leaves it on the stack

ACE_MT_MSGLOC_LATEST_PURGE Reads current message and takes it off of the stack

ACE_MT_MSGLOC_LATEST_NPURGE Reads current message and leaves it on the stack

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

163

/*Global (used for all modes) Message Structure for decoded 1553 msgs */
typedef struct MSGSTRUCT
{
 U16BIT wTYPE; /* Contains the msg type (see above) */
 U16BIT wBlkSts; /* Contains the block status word */
 U16BIT wTimeTag; /* Time Tag of message */
 U16BIT wCmdWrd1; /* First command word */
 U16BIT wCmdWrd2; /* Second command word (RT to RT) */
 U16BIT wCmdWrd1Flg; /* Is command word 1 valid? */
 U16BIT wCmdWrd2Flg; /* Is command word 2 valid? */
 U16BIT wStsWrd1; /* First status word */
 U16BIT wStsWrd2; /* Second status word */
 U16BIT wStsWrd1Flg; /* Is status word 1 valid? */
 U16BIT wStsWrd2Flg; /* Is status word 2 valid? */
 U16BIT wWordCount; /* Number of valid data words */
 U16BIT aDataWrds[32]; /* An array of data words */

/* The following are only applicable in BC mode */
 U16BIT wBCCtrlWrd; /* Contains the BC control word */
 U16BIT wBCGapTime; /* Message gap time word */
 U16BIT wBCLoopBack1; /* First looped back word */
 U16BIT wTimeTag2; /* wBCLoopBack2 is redefined as TimeTag2 */
 U16BIT wBCLoopback1Flg; /* Is loopback 1 valid? */
 U16BIT wTimeTag3; /* wBCLoopBack2Flg is redefined as TimeTag3 */
}MSGSTRUCT;

Figure 33. RT Command Stack MSGSTRUCT Object Definition

S16BIT nResult;
MSGSTRUCT sMsg;

/* Get a Decoded Message from the RT Command Stack */
nResult = aceRTGetStkMsgDecoded(
 0, /* LDN */
 &sMsg, /* Message Storage */
 ACE_RT_MSGLOC_NEXT_PURGE); /* Read and Purge Msg */

if(nResult)
 printf(“aceRTGetStkMsgDecoded Error: Code %d\n”,nResult);

Code Example 84. Reading a Decoded Message from the
RT Command Stack

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

164

3.3.4.6.2 RT Block Status Word

The Block Status Word (BSW) is used to identify the health of the message. The BSW
contains information regarding the message, specifying whether the message is in
progress or has been completed, what channel the message was processed on, and
whether or not there were any errors in the message table. The RT Block status
word’s bits are defined in

Table 61. RT Block Status Word
Bit Description
15

(MSB)
EOM Set at the completion of a BC message, regardless of whether or

not there were any errors in the message.

14 SOM Set at the start of a BC message and cleared at the end of the
message.

13 A/B CHANNEL This bit will be low if the message was processed on Channel A or
high if the message was processed on Channel B

12 ERROR FLAG If this bit is high, one or more of bits 10, 9, and/or 8 are also set
high.

11 RT-RT FORMAT This bit is set when the device is the receiving RT in an RT-to-RT
command.

10 FORMAT ERROR If set, indicates the received portion of a message contained one or
more violations of the 1553 message validation criteria (sync,
encoding, parity, bit count, word count, etc.), or the RT's status
word received from a responding RT contained an incorrect RT
address field.

9 NO RESPONSE TIMEOUT If set, indicates that an RT has either not responded or has
responded later than the BC No Response Timeout time.

8 LOOP TEST FAIL A loopback test is performed on the transmitted portion of every
message in BC mode. A validity check is performed on the received
version of every word transmitted by the BC. In addition, a bit-by-bit
comparison is performed on the last word transmitted by the BC for
each message. If either the received version of any transmitted
word is invalid (sync, encoding, bit count, and/or parity error) and/or
the received version of the last word transmitted by the BC does not
match the transmitted version, the LOOP TEST FAIL bit will be set.

7 CIRCULAR BUFFER ROLLOVER This bit will be set if the lookup table address pointer crossed the
upper boundary of its circular buffer, resulting in a rollover.

6 ILLEGAL COMMAND WORD If this bit is set, it indicates that the message has been illegalized.

5 WORD COUNT ERROR Indicates the BC did not transmit the correct number of Data Words.

4 INCORRECT DATA SYNC Indicates the BC transmitted a Command sync in a Data Word.

3 INVALID WORD Indicates the BC (or transmitting RT in an RT-to-RT transfer)
transmitted with one or more words containing one or more of the
following error types: sync field error, Manchester encoding error,
parity error, and/or bit count error.

2 RT-RT GAP / SYNC ADDRESS
ERROR

This bit is set if the RT is the receiving RT for an RT-to-RT transfer
and one or more of the following occur:

4. The GAP CHECK ENABLED bit is set to logic "1" and the
transmitting RT responds with a response time of less than

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

165

Table 61. RT Block Status Word
Bit Description

4 μs.
5. There is an incorrect sync type or format error (encoding,

bit count, and/or parity error) in the transmitting RT Status
Word.

6. The RT address field of the transmitting RT Status Word
does not match the RT address in the transmit Command
Word.

1 RT-RT 2ND COMMAND ERROR If the device is the receiving RT for an RT-to-RT transfer, this bit set
indicates one or more of the following error conditions in the
transmit Command Word:

4. T/R bit = logic “0”
5. Subaddress = 00000 or 11111
6. Same RT Address field as the receive Command Word.

0
(LSB)

COMMAND WORD CONTENTS
ERROR

This bit indicates a received command word is not defined in
accordance with MIL-STD-1553B. This includes the following
undefined Command Words:

4. BROADCAST DISABLED and the Command Word is a
non-mode code, broadcast, transmit command.

5. The OVERRIDE MODE T/R ERROR bit is logic "0" and a
message with a T/R bit of "0," a subaddress/mode field of
00000 or 11111 and a mode code field between 00000
and 01111.

6. BROADCAST DISABLED and a mode code command
that is not permitted to broadcast (e.g.. Transmit status) is
sent to the broadcast address (11111).

3.3.4.6.3 Data via RT Data Block

3.3.4.6.3.1 Reading and Writing Individual RT Data Blocks

In addition to reading RT Command Stack, any defined RT Data Block can be read or
written to asynchronously by the user via the aceRTDataBlkRead() and
aceRTDataBlkWrite() functions. See Section 3.3.4.3.1 on RT Data Block Types.

3.3.4.6.3.1.1 Single-Buffered and Double-Buffered RT Data Blocks

Single-Buffered and Double-Buffered Data Blocks will return the inactive 1553 data to
the user. Returning the inactive data guarantees that the data is complete and does
not contain any partial from an active message on the 1553 bus.

Note: The “wBufferSize” variable should not exceed 32 words.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

166

S16BIT nResult;
U16BIT wData[32];
#define RTDBLK1 0x0001 /* Single-Buffered RT Data Block */

/* Read an RT Data Block */
nResult = aceRTDataBlkRead(
 0, /* LDN */
 RTDBLK1, /* Data Block OUID to read */
 wData, /* Buffer Storage */
 32, /* Number of Words to read */
 0); /* Offset into Data Block */

if(nResult)
 printf(“aceRTDataBlkRead Error: Code %d\n”, nResult);

Code Example 85. Reading a “Single-Buffered” Data Block

3.3.4.6.3.1.2 Circular-Buffered RT Data Blocks

Reading and Writing to Circular-Buffered RT Data Blocks (including the Global
Circular-Buffered Data Block) requires knowledge of where the Data Pointers are
within the Circular Buffer. There are two Data Pointers: “pUserRWOffset”, which
defines the last location read/written by the user and “pAceRWOffset”, which defines
the last location read/written by DDC Hardware. These pointers can be used to
determine the right offset into the Circular Buffer to read or write data. Circular Buffer
Data Pointers can be retrieved via the aceRTDataBlkCircBufInfo() function.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

167

S16BIT nResult;
U16BIT wData[32];
U16BIT nUserRWOffset, nAceRWOffset;
#define RTDBLK1 0x0001 /* Circular-Buffered RT Data Block */

/* Get Circular Buffer Data Pointers */
nResult = aceRTDataBlkCircBufInfo(
 0, /* LDN */
 RTDBLK1, /* OUID of Data Block to query */
 &nUserRWOffset, /* Current User Offset */
 &nAceRWOffset) /* Current Hardware Offset */

if(nResult)
 printf(“aceRTDataBlkCircBufInfo Error: %d\n”, nResult);

/* Read an RT Data Block */
nResult = aceRTDataBlkRead(
 0, /* LDN */
 RTDBLK1, /* OUID of Data Block to read */
 wData, /* Buffer Storage */
 32, /* Number of Stat Words to Read */
 nAceRWOffset); /* Offset into Data Block */

if(nResult)
 printf(“aceRTDataBlkRead Error: %d\n”, nResult);

Code Example 86. Reading a “Circular-Buffered” Data Block

3.3.4.6.4 Data via Host Buffer

The RT Host Buffer (HBUF) is a circular memory buffer resident on the host that
contains the log of all messages involving the configured RT address, in the order
they appeared on the 1553 bus.

One advantage of using a Host Buffer is that all messages are automatically
transferred to the HBUF by means of internally configured interrupt events. This will
make sure that RT data is removed from DDC hardware and placed into the Host
Buffer before any data loss can occur.

Another advantage is that the size of the host buffer can be fairly large and can serve
as an elasticity buffer for applications that cannot consume data at a high rate.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

168

3.3.4.6.4.1 Installing the Host Buffer

The Host Buffer should be installed before RT is active on the 1553 bus (See
aceRTStart())

Note: The Host Buffer size should be typically be 4-5 times larger than the
maximum capacity of the DDC hardware (RT Command Stack).

The following equation can be used to calculate the correct Host Buffer size:

HBUFSIZE = (CMD_STACK_SIZE * ACE_MSGSIZE_RT) * 4

S16BIT nResult;
#define CMD_STK_SIZE = 512

/* Setup the RT Host Buffer */
nResult = aceRTInstallHBuf(
 0, /* LDN */
 (CMD_STK_SIZE * ACE_MSGSIZE_RT) * 4)); /* Hbuf size */

if(nResult)
 printf(“aceRTInstallHBuf Error: Code %d\n”, nResult);

Code Example 87. Installing the RT Host Buffer

3.3.4.6.4.2 Reading the Host Buffer

The Host Buffer architecture is designed to automatically remove data from the DDC
hardware and place it into the host-allocated Host Buffer. It is the user’s responsibility
to read entries from the Host Buffer for consumption.

Messages can be read off of the Host Buffer in two formats: Raw or Decoded.
Depending on which method is used, Messages taken off of the Host Buffer will be
returned in FIFO order or LIFO order.

3.3.4.6.4.2.1 RAW FORMAT

The Raw Format will return a U16BIT pointer to the binary data. This method will also
allow more than one message to be read off of the Host Buffer at one time. Each
message will be fixed-length of 36 words and will use zero fill words for messages not
required the word maximum. For example, if two Messages have been monitored, the
binary data will be 72 words deep, with the second message starting at offset 36.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

169

Table 62. RT Host Buffer Raw Format for One RT Message

Word MSB LSB

Bits 15 7 0
0 Block Status Word

1 Time Tag Word

2 Bit [15] EOM Bits [14:8]
Data Length (in Words)

Bits [7:0]
1553 Message Type

3 1553 Command Word

4 Data Word 0

5 Data Word 1

n+4 Data Word n

Messages can be read from the Host Buffer in Raw Format using the
aceRTGetHBufMsgsRaw() function. The function will return up to “wBufferSize”
words or all messages, whichever is smaller. The “pdwMsgCount” pointer will inform
the user of the number of messages returned.

Note: Each message is a fixed length of 36 words.

S16BIT nResult;
U32BIT dwStkLost, dwHBufLost, dwMsgCount;
U16BIT wBuffer[400] = { 0x00000000 };

/* Get Raw Messages from the Host Buffer */
nResult = aceRTGetHBufMsgsRaw(
 0, /* LDN */
 wBuffer, /* Buffer Storage */
 400, /* Max size of Buffer */
 &dwMsgCount, /* Number of Msgs read */
 &dwStkLost, /* Lost Messages (Stack) */
 &dwHBufLost); /* Lost Messages (Hbuf) */

if(nResult)
 printf(“aceRTInstallHBuf Error: Code %d\n”, nResult);

Code Example 88. Reading Raw Data From the Host Buffer

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

170

3.3.4.6.4.2.2 DECODED FORMAT

The Decoded Format will read one message off the Host Buffer and decode it into a
MSGSTRUCT structure object. In addition, the user can decide whether to read the
oldest (next) or latest message and whether or not to remove (purge) the message
from the Host Buffer.

A message can be read from the Host Buffer in Decoded Format using the
aceRTGetHBufMsgDecoded() function. The function will return one message
decoded into the “pMsg” MSGSTRUCT variable. The “wMsgLoc” variable is used to
define which message to read and whether or not to remove it from the Host Buffer.

Host Buffer Message Location and Purge Options (wMsgLoc)
ACE_RT_MSGLOC_NEXT_PURGE Reads next message and takes it off of the host buffer

ACE_RT_MSGLOC_NEXT_NPURGE Reads next message and leaves it on the host buffer

ACE_RT_MSGLOC_LATEST_PURGE Reads current message and takes it off of the host buffer

ACE_RT_MSGLOC_LATEST_NPURGE Reads current message and leaves it on the host buffer

/*Global (used for all modes) Message Structure for decoded 1553 msgs */
typedef struct MSGSTRUCT
{
 U16BIT wTYPE; /* Contains the msg type (see above) */
 U16BIT wBlkSts; /* Contains the block status word */
 U16BIT wTimeTag; /* Time Tag of message */
 U16BIT wCmdWrd1; /* First command word */
 U16BIT wCmdWrd2; /* Second command word (RT to RT) */
 U16BIT wCmdWrd1Flg; /* Is command word 1 valid? */
 U16BIT wCmdWrd2Flg; /* Is command word 2 valid? */
 U16BIT wStsWrd1; /* First status word */
 U16BIT wStsWrd2; /* Second status word */
 U16BIT wStsWrd1Flg; /* Is status word 1 valid? */
 U16BIT wStsWrd2Flg; /* Is status word 2 valid? */
 U16BIT wWordCount; /* Number of valid data words */
 U16BIT aDataWrds[32]; /* An array of data words */

/* The following are only applicable in BC mode */
 U16BIT wBCCtrlWrd; /* Contains the BC control word */
 U16BIT wBCGapTime; /* Message gap time word */
 U16BIT wBCLoopBack1; /* First looped back word */
 U16BIT wTimeTag2; /* wBCLoopBack2 is redefined as TimeTag2 */
 U16BIT wBCLoopback1Flg; /* Is loopback 1 valid? */
 U16BIT wTimeTag3; /* wBCLoopBack2Flg is redefined as TimeTag3 */
}MSGSTRUCT;

Figure 34. RT Data Block MSGSTRUCT Object Definition

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

171

S16BIT nResult;
U32BIT dwStkLost, dwHBufLost, dwMsgCount;
MSGSTRUCT sMsg;

/* Get a Decoded Message from the Host Buffer */
nResult = aceRTGetHBufMsgDecoded(
 0, /* LDN */
 &sMsg, /* Message Storage */
 &dwMsgCount, /* Number of Msgs read */
 &dwStkLost, /* Lost Msgs (stack) */
 &dwHBufLost, /* Lost Msgs (Hbuf) */
 ACE_MT_MSGLOC_NEXT_PURGE); /* Read and Purge */

if(nResult)
 printf(“aceRTGetHBufMsgDecoded Error: Code %d\n”,nResult);

Code Example 89. Reading a Decoded Message from the Host Buffer

3.3.4.6.5 Mode Code Support

The AceXtreme C SDK RT supports all MIL-STD-1553B Mode Codes. Please
reference DDC’s MIL-STD-1553 Designer’s Guide for more information on individual
Mode Code definitions.

3.3.4.6.5.1 Reading and Writing Mode Code Data

The data portion of Mode Codes (that have associated data) is stored internally and
can be accessed at any time via the aceRTModeCodeReadData() and
aceRTModeCodeWriteData() functions.

S16BIT nResult;
U16BIT nMCData;

/* Read Mode Code Data */
nResult = aceRTModeCodeReadData(
 0, /* LDN */
 ACE_RT_MCDATA_RX_SYNCHRONIZE, /* “Synchronize” MC */
 &nMCData); /* MC Data Storage */

if(nResult)
 printf(“aceRTModeCodeReadData Error: Code %d\n”,nResult);

Code Example 90. Reading Mode Code Data for “Synchronize”(10001)

http://www.ddc-web.com/
http://www.ddc-web.com/Products/MIL-STD-1553/DesignersGuide.aspx

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

172

Note: In order for Mode Codes to be properly processed, they need to be “Legal”.
See Section 3.3.4.7 on how to legalize commands.

3.3.4.6.5.2 Mode Code Events

The AceXtreme C SDK Remote Terminal has the ability to notify the user when a
specific Mode Code has been received (via an Interrupt Event). This is accomplished
via the aceRTModeCodeIrqEnable() function. For each Mode Code Family, an
individual (applicable) Mode Code can be configured to generate an
ACE_IMR1_RT_MODE_CODE event when received. (See Section 3.2.3 on how to configure
the ACE_IMR1_RT_MODE_CODE event.)

Table 63. Mode Code Family Types
Family Type Description

ACE_RT_MCTYPE_RX_NO_DATA “Own Address” RT-Receive Mode Codes without Data

ACE_RT_MCTYPE_RX_DATA “Own Address” RT-Receive Mode Codes with Data

ACE_RT_MCTYPE_TX_NO_DATA “Own Address” RT-Transmit Mode Codes without Data

ACE_RT_MCTYPE_TX_DATA “Own Address” RT-Transmit Mode Code with Data

ACE_RT_MCTYPE_BCDT_RX_NO_DATA Broadcast RT-Receive Mode Code without Data

ACE_RT_MCTYPE_BCST_RX_DATA Broadcast RT-Receive Mode Code with Data

ACE_RT_MCTYPE_BCST_TX_NO_DATA Broadcast RT-Transmit Mode Code without Data

ACE_RT_MCTYPE_BCST_TX_DATA Broadcast RT-Transmit Mode Code with Data

Table 64. Mode Code Interrupt Event Options
Mode Code Value Description Applicable Family

ACE_RT_MCIRQ_DYN_BUS_CTRL Dynamic Bus Control ACE_RT_MCTYPE_TX_NO_DATA

ACE_RT_MCIRQ_SYNCHRONIZE Synchronize

ACE_RT_MCTYPE_RX_DATA
ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_TX_DATA
ACE_RT_MCTYPE_BCST_RX_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RTMCIRQ_TRNS_STATUS Transmit Status
Word ACE_RT_MCTYPE_TX_NO_DATA

ACE_RT_MCIRQ_INIT_SELF_TEST Initiate Self-Test
ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_TRNS_SHUTDOWN Transmitter
Shutdown

ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_OVR_TRNS_SHUTDOWN Override Transmitter
Shutdown

ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

173

Table 64. Mode Code Interrupt Event Options
Mode Code Value Description Applicable Family

ACE_RT_MCIRQ_INH_TERM_FLAG Inhibit terminal flag
bit

ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_OVR_INH_TERM_FLG Override inhibit
terminal flag bit

ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_RESET_REMOTE_TERM Reset remote
terminal

ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_TRNS_VECTOR Transmit vector word ACE_RT_MCTYPE_TX_DATA

ACE_RT_MCIRQ_TRNS_LAST_CMD Transmit last
command ACE_RT_MCTYPE_TX_DATA

ACE_RT_MCIRQ_TRNS_BIT Transmit bit word ACE_RT_MCTYPE_TX_DATA

ACE_RT_MCIRQ_SEL_TRNS_SHUTDOWN Selected transmitter
shutdown

ACE_RT_MCTYPE_RX_DATA
ACE_RT_MCTYPE_BCST_RX_DATA

ACE_RT_MCIRQ_OVRD_SEL_TRNS_SHUTDWN Override selected
transmitter shutdown

ACE_RT_MCTYPE_RX_DATA
ACE_RT_MCTYPE_BCST_RX_DATA

S16BIT nResult;

/* Enable Mode Code Event */
nResult = aceRTModeCodeIrqEnable(
 0, /* LDN */
 ACE_RT_MCTYPE_TX_DATA, /* TX Mode Code */
 ACE_RT_MCIRQ_TRNS_VECTOR); /* Transmit Vec. Wrd */

if(nResult)
 printf(“aceRTModeCodeIrqEnable Error: Code %d\n”,nResult);

Code Example 91. Enabling an “Transmit Vector Word” Mode Code
Interrupt Event

3.3.4.7 Command Legalization

A “Legal Command” is a 1553 Command Word that is acceptable to be processed by
the configured Remote Terminal. Since a particular RT may not be able to receive all
valid 1553 Commands, the AceXtreme C SDK allows all invalid command words to be
deemed illegal. If an illegal command word is sent to the DDC Remote Terminal to be
processed by RT, the RT will return a Status Word with the Message Error (Bit 10)
Set. Commands can be legalized by Address (Broadcast or “own address”), RT
Transmit or Receive, Subaddress, and Word Count (including Mode Code
commands).

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

174

Note: Entries in the Command Legalization Lookup Table can be “Illegalized” and
queried in a similar fashion using the aceRTMsgLegalityDisable() and
aceRTMsgLegalityStatus() functions.

Table 65. Command Legalization Lookup Table

SUBADDRESS 0

Own Addr /
Broadcast

Command
Direction Word Count / Mode Code (32-bit Value)

OWN (1) TX (1) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

OWN (1) RX (0) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

BCST (0) RX (0) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

•
•
•

•
•
•

•
•
•

SUBADDRESS 31

Own Addr /
Broadcast

Command
Direction Word Count / Mode Code (32-bit Value)

OWN (1) TX (1) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

OWN (1) RX (0) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

BCST (0) RX (0) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

Note: By default, all 1553 Command Words are marked ILLEGAL until they are

“legalized” via the aceRTDataBlkMapToSA() or aceRTMsgLegalityEnable()
functions.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

175

S16BIT nResult;
#define RT_ADDRESS 10

/* Legalize Command Word */
nResult = aceRTMsgLegalityEnable(
 0, /* LDN */
 1, /* Own address (not BCAST) */
 1, /* Transmit Messages */
 19, /* Subaddress 19 */
 0xFFFFFFFF); /* “All” Word Counts */

if(nResult)
 printf(“aceRTMsgLegalityEnable Error: Code %d\n”,nResult);

Code Example 92. Legalizing a Specific 1553 Command Word
(“Own Addr”, TX, SA19, All Word Counts)

3.3.4.8 Using Interrupt Events

Some applications may benefit from event notifications regarding the state of Remote
Terminal. The following events directly relate to the Remote Terminal (RT) mode of
operation. For information on how to configure events and callbacks, see Section
3.2.3.

Table 66. RT Interrupt Event Options
Event Description

ACE_IMR1_RT_MODE_CODE (Bit 1) Enable RT Mode Code Events

ACE_IMR1_RT_SUBADDR_EOM (Bit 4) Enable RT Subaddress Access Events

ACE_IMR1_RT_CIRCBUF_ROVER (Bit 5) Indicates an RT Circular Buffer has rolled over

ACE_IMR1_TT_ROVER (Bit 6) Indicates the Hardware Timetag has rolled over

ACE_IMR1_BCRT_CMDSTK_ROVER (Bit 12) Indicates the RT Command Stack has reached rolled over

ACE_IMR2_RT_CIRC_50P_ROVER Indicates an RT Circular Buffer reached the 50% mark

ACE_IMR2_RT_CSTK_50P_ROVER Indicates the RT Command Stack reached the 50% mark

ACE_IMR2_RT_ILL_CMD Indicates the RT received an illegal command

3.3.5 Multi-RT (ACE_MODE_MRT)

The AceXtreme family includes a Multi-RT engine. The Multi-RT engine provides the
capability of implementing up to 31 RTs on a single MIL-STD-1553 channel. The
Multi-RT architecture provides multiprotocol support, with full compliance to all of the
commonly used data bus standards, including MIL-STD-1553A, MIL-STD-1553B

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

176

(Notice 2), and MIL-STD-1760. Programmable flexibility enables the RT to be
configured to fulfill any set of system requirements. This includes the capability to
meet the MIL-STD-1553A response time requirement of 2μs to 5μs, and multiple
options for mode code subaddresses, mode codes, RT status word, and RT BIT word.
The Multi-RT engine implements all of the Protocol options and support as with the
Single RT mode.

This section on the AceXtreme Multi-RT mode will only cover the difference between
the Single RT mode (ACE_MODE_RT) and the Multi-RT mode. For all other
information on RT mode see Section 3.3.4 on the ACE_MODE_RT.

3.3.5.1 Configuration

The AceXtreme C SDK’s Multi-Remote Terminal mode has numerous configurations
options that should be addressed before the RTs are brought online. Configuration is
accomplished via the acexMRTConfigure() function and is typically called after the
aceInitialize() function call.

Table 67. MRT Configuration Parameters
Variable Description Valid Options

wCmdStkSize Size (in words) of the command stack ACE_RT_CMDSTK_256 -> 256 words
ACE_RT_CMDSTK_512 -> 512 words
ACE_RT_CMDSTK_1K -> 1K words
ACE_RT_CMDSTK_2K -> 2K words (default)

u32GlbDataStkType The size of the desired Global RT
data stack

ACE_RT_DBLK_GBL_C_128 -> 128 Words
ACE_RT_DBLK_GBL_C_256 -> 256 Words
ACE_RT_DBLK_GBL_C_512 -> 512 Words
ACE_RT_DBLK_GBL_C_1K -> 1K Words
ACE_RT_DBLK_GBL_C_2K -> 2K Words
ACE_RT_DBLK_GBL_C_4K -> 4K Words
ACE_RT_DBLK_GBL_C_8K -> 8K Words

u16GblDataBlkID Identification number of global data
block.

1 – 2048

After the call to acexMRTConfigure() has been completed the next task is to enable
the desired RT address the AceXtreme device will emulate. This is done by the use of
the function call acexMRTEnableRT(). This function must be called for each RT the
AceXtreme device will be emulating. The second parameter passed into the function
is the RT address while the third parameter has several options which can be
“logically OR’ed” together. These parameters are:

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

177

Table 68. Multi-RT Configuration Options
Options Description

ACE_RT_OPT_CLR_SREQ Sets the Clear Service Request bit 2 to a 1. This will clear a service request after a tx
vector word.

ACE_RT_OPT_LOAD_TT With the reception of a Synchronize (with data) mode command, this will cause the Data
Word from the Synchronize message to be loaded into the Hardware Time Tag Register.

ACE_RT_OPT_CLEAR_TT With the reception of a Synchronize (without data) mode command, this will cause the
value of the Hardware Time Tag Register to clear to 0x0000.

ACE_RT_OPT_OVR_DATA

This option affects the operation of the RT subaddress circular buffer memory
management scheme. The Lookup Table address pointer will only be updated following a
transmit message or following a valid receive or broadcast message to the respective
Rx/Bcst subaddress. If this option is enabled, the Lookup Table pointer will not be
updated following an invalid receive or broadcast message. In addition, an interrupt
request for a circular buffer rollover condition (if enabled) will only occur following the end
of a transmit message during which the last location in the circular buffer has been read
or following the end of a valid receive or Broadcast message in which the last location in
the circular buffer has been written to.

ACE_RT_OPT_OVR_MBIT

Enabling this option will cause a mode code Command Word with a T/R* bit of 0 and an
MSB of the mode code field of 0 to be considered a defined (reserved) mode Command
Word. The DDC hardware will respond to such a command and the Message Error bit will
not become set.

ACE_RT_OPT_ALT_STS Enabling this option will cause all 11 RT Status Word bits to be under control of the user
via theaceRTStatusBitsSet() and aceRTStatusBitsClear() functions.

ACE_RT_OPT_IL_RX_D Enabling this option will cause the device to not store the received data words if the DDC
hardware device receives a receive command that has been illegalized.

ACE_RT_OPT_BSY_RX_D

If a particular Command Word (broadcast, T/R* bit, subaddress) has been programmed to
be busy by means of the Busy lookup table and the RT receives a receive command, the
1553 device will respond with its Status Word with the Busy bit set and will not store the
received Data Words.
 See Section 0 on modifying the Busy Lookup Table.

ACE_RT_OPT_SET_RTFG

If enabled, the Terminal flag status word bit will also become set if either a transmitter
timeout (660.5 μs) condition had occurred or the ACE RT had failed its loopback test for
the previous non-broadcast message. The loopback test is performed on all non-
broadcast messages processed by the RT. The received version of all transmitted words
is checked for validity (sync and data encoding, bit count, parity) and correct sync type. In
addition, a 16-bit comparison is performed on the received version of the last word
transmitted by the RT. If any of these checks or comparisons do not verify, the loopback
test is considered to have failed.

ACE_RT_OPT_1553A_MC

This option causes the RT to consider only subaddress 0 to be a mode code subaddress.
Subaddress 31 is treated as a standard non-mode code subaddress. In this configuration,
the 1553 hardware will consider valid and respond only to mode code commands
containing no data words. In this configuration, the RT will consider all mode commands
followed by data words to be invalid and will not respond. In addition the 1553 hardware
will not decode for the MIL-STD-1553B "Transmit Status" and "Transmit Last Command"
mode codes. As a result, the internal RT Status Word Register will be updated as a result
of these commands.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

178

Table 68. Multi-RT Configuration Options
Options Description

ACE_RT_OPT_MC_O_BSYx

If a particular Command Word (broadcast, T/R* bit, subaddress) has been programmed to
be busy by means of the Busy Lookup Table, the 1553 hardware will transmit its Status
Word with its BUSY bit set, followed by a single Data Word, in response to either a
Transmit Vector Word mode command or a Reserved transmit mode command with data
(transmit mode codes 10110 through 11111).

See Section 0 on modifying the Busy Lookup Table.

ACE_RT_OPT_BCST_DIS The 1553 hardware will not recognize RT address 31 as the broadcast address. In this
instance, RT address 31 may be used as a discrete RT address.

ACE_RT_OPT_INACTIVE This option enables the RT, but leaves it inactive. Although the inactive RT does not
respond to messages, all API calls to RT are available.

ACE_RT_OPT_TO_ACTIVATE This option allows a BC to become active after the DBC switching process. Multiple RTs
can be setup and activated at the same time.

3.3.5.2 Multi-RT Lookup Tables

The AceXtreme C SDK Multi-RT architecture contains a number of lookup tables to
store specific user choices with regards to how the RTs will respond on the 1553 bus.
The tables’ functions are described in Sections 3.3.5.2.1, 3.3.5.2.2, and 3.3.5.2.3,
including information on how to configure them.

3.3.5.2.1 Busy Bit Table

The Busy Bit Table holds information on which subaddresses will respond with the
Busy Bit (Bit 3) set in the Status Word. The table is based on address (own address or
broadcast) and command direction (RT Transmit/Receive). By default, the Busy Bit
will be OFF for all subaddresses.

Note: Entries in the Busy Bit Lookup Table can be cleared and queried using the
aceRTBusyBitsTblClear() and aceRTBusyBitsTblStatus() functions.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

179

Table 69. Busy Bit Lookup Table

Own Addr /
Broadcast

Command Direction Bus Subaddresses

OWN (1) TX (1) Each binary bit corresponds to Subaddress
(i.e. 0x00000100 is Subaddress 8)

OWN (1) RX (0) Each binary bit corresponds to Subaddress
(i.e. 0x00000100 is Subaddress 8)

BCST (0) RX (0) Each binary bit corresponds to Subaddress
(i.e. 0x00000100 is Subaddress 8)

S16BIT nResult;

/* Set Busy Bit for RT 1 (OWN Address (1) , TX (1) , SA19) */
nResult = acexMRTSetRTBusyBitsTbl(
 0, /* LDN */
 1, /* RT Address */
 1, /* Own Address (not BCAST) */
 1, /* Transmit Cmds */
 ACE_RT_SA19); /* Subaddress 19 */

if(nResult)
 printf(“acexMRTSetRTBusyBitsTbl Error: %d\n”,nResult);

Code Example 93. Setting the Busy Bit for all TRANSMIT Commands
to SA19 (“Own Addr”, TX, SA 19)

3.3.5.2.2 Status Word Table

The Status Word Table holds information on what bits are active (set) in the RT Status
Word. By default, the “Standard” 1553 Status Word is used allowing configuration of
optional Status Word bits. Alternatively, an “Alternate Status Word” can be defined
(See ACE_RT_OPT_ALT_STS option in aceRTConfigure()). Using the Alternate
Status word will allow the user to control bits 0-10 of the RT Status Word.

Note: When using the “Standard” Status Word, some bits are internally set and
clear by the DDC Hardware and cannot be configured via the API.

Note: Entries in the Status Word Lookup Table can be cleared and queried using
the aceRTStatusBitsClear() and aceRTStatusBitsStatus() functions

.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

180

Table 70. Standard RT Status Word
BIT Description

15 (MSB) Remote Terminal Address Bit 4

14 Remote Terminal Address Bit 3

13 Remote Terminal Address Bit 2

12 Remote Terminal Address Bit 1

11 Remote Terminal Address Bit 0

10 Message Error

9 Instrumentation

8 Service Request

7 Reserved

6 Reserved

5 Reserved

4 Broadcast Command Received

3 Busy

2 Subsystem Flag

1 Dynamic Bus Control Acceptance

0 (LSB) Terminal Flag

S16BIT nResult;

/* Set Service Request Status Bit for RT 1*/
nResult = acexMRTSetRTStatusBits(
 0, /* LDN */
 1, /* RT Address */
 ACE_RT_STSBIT_SREQ); /* Set “Service Reg” bit */

if(nResult)
 printf(“acexMRTSetRTStatusBits Error: %d\n”, nResult);

Code Example 94. Setting the “Service Request” Bit in the
RT Status Word

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

181

3.3.5.2.3 Built-in-Test (BIT) Word Table

The BIT Word is maintained by the RT device to store advanced error information.
The internal contents of the BIT data word are provided to supplement the appropriate
bits already available in the RT Status Word. The BIT Word definition can be the
standard Internal BIT Data Word (default). Alternatively, the user can define a custom
BIT Word for unique applications. Each RT has its own unique Built-in-Test word.

Whether internal or external, the BIT Word can be read via the aceRTBITWrdRead()
function.

Table 71. Internal Built-In-Test (BIT) Data Word
BIT Description

15 (MSB) Transmitter Timeout

14 Loop Test Failure B

13 Loop Test Failure A

12 Handshake Failure

11 Transmitter Shutdown B

10 Transmitter Shutdown A

9 Terminal Flag Inhibited

8 BIT Test Fail

7 High Word Count

6 Low Word Count

5 Incorrect Sync Received

4 Parity/Manchester Error Received

3 RT-RT Gap/Sync/Address Error

2 RT-RT No Response Error

1 RT-RT 2nd Command Word Error

0 (LSB) Command Word Contents Error

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

182

S16BIT nResult;
U16BIT nBITWord;

/* Configure RT BIT Word for RT 1*/
nResult = acexMRTConfigRTBITWrd(
 0, /* LDN */
 1, /* RT Address */
 ACE_RT_BIT_INTERNAL, /* Use Internal BIT */
 0); /* Reserved */

if(nResult)
 printf(“acexMRTConfigRTBITWrd Error: Code %d\n”,
nResult);

/* Read RT BIT Word for RT 1 */
nResult = acexMRTReadRTBITWrd(
 0, /* LDN */
 1, /* RT Address */
 ACE_RT_BIT_INTERNAL, /* Read from Internal BIT */
 &nBITWord); /* Bit Word Storage */

if(nResult)
 printf(“acexMRTReadRTBITWrd Error: Code %d\n”, nResult);

Code Example 95. Configure and Read the Internal BIT Word

3.3.5.3 Multi-RT Data Blocks

RT Data Blocks are used to store MIL-STD-1553 data words being received or to be
transmitted by the Remote Terminal. Once created, a RT Data Block can be
independently read or written to. In order to use an RT Data Block it must be linked to
a specific RT Subaddress. When a 1553 message involving that Subaddress is sent
on the bus, the RT Engine will place or pull data from the linked RT Data Block. For
more information on the different data block types available see section 4.3.4.3 (RT
Data Blocks in the Remote Terminal (ACE_MODE_RT section)).

3.3.5.3.1 Mapping a Multi-RT Data Block to a RT Subaddress

Once an RT Data Block (see Section 3.3.4.3.2) has been created, it needs to be
linked to an RT Subaddress to identify which 1553 message data will be stored in
which RT Data Blocks. Except for the Global Circular-Buffered RT Data Block (Section
3.3.4.3.1.4), only one Data Block can be linked to each Subaddress/Message Type
combination. Applicable Message Types are ACE_RT_MSGTYPE_RX (Receive),
ACE_RT_MSGTYPE_TX (Transmit), and ACE_RT_MSGTYPE_BCST (Broadcast).
The AceXtreme Multi-RT functions use the call acexMRTDataBlkMapToRTSA() to
map the data block to the RT’s subaddress. This function is similar to

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

183

aceRTDataBlkMapToSA() with the added (2nd) parameter of s8RtAddr which
represents the address of the RT linked to the data block.

3.3.5.3.2 Subaddress Interrupt Options

The sixth Parameter of aceRTDataBlkMapToSA() defines interrupt options for this
Subaddress/Message Type combination. The following options can be “logically
OR’ed” into the Third parameter (wIrqOptions) of aceRTDataBlkMapToSA(). See
Section 3.2.3 on how to capture Device Interrupt Events.

Interrupt Option Description (if Enabled)
ACE_RT_DBLK_EOM_IRQ The ACE_IMR1_RT_SUBADDR_EOM Device Interrupt Event will be

generated when this Data Block receives 1553 message data.

ACE_RT_DBLK_CIRC_IRQ The ACE_IMR1_RT_CIRCBUF_ROVER Device Interrupt Event will be
generated when this Circular-Buffered Data Block rolls over (100%).

The ACE_IMR2_RT_CIRC_50P_ROVER Device Interrupt Event will be
generated when this Circular-Buffered Data Block reaches 50%.

0 For no IRQ

Note: If the Seventh Parameter of aceRTDataBlkMapToSA() is TRUE, the
specified Message Type/ Subaddress combination will be marked “Legal” in
the Command Legalization Table (see Section 3.3.4.7).

S16BIT nResult;
#define RTDBLK1 0x0001
#define RTADDRESS_1 0x0001

/* Map RTDBLK1 to RT 1 SA 19 */
nResult = acexRTDataBlkMapToRTSA(
 0, /* LDN */
 RTADDRESS_1, /* Data Block OUID to map */
 RTDBLK1, /* Data Block OUID to map */
 19, /* Subaddress to map */
 ACE_RT_MSGTYPE_RX | /* Map for RX Messages */
 ACE_RT_MSGTYPE_TX, /* Map for TX Messages */
 0, /* Interrupt Mask */
 TRUE); /* “Legalize” above commands */

if(nResult)
 printf(“acexRTDatBlkMapToRTSA Error: Code %d\n”, nResult);

Code Example 96. Mapping RTDBLK1 to TX ad RX messages for
RTADDRESS_1, Subaddress 19

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

184

3.3.5.4 Activating the Remote Terminals

Once the Remote Terminal is configured and the RT Lookup Tables have been setup,
the RT is ready to begin responding to 1553 bus traffic.

3.3.5.4.1 Starting and Stopping

The Remote Terminals can be started and stopped dynamically by the user. Starting
and Stopping is accomplished by the aceRTStart() and aceRTStop() functions.
Individual RTs can be start by calling aceRTStart() on an RT basis, or all enabled RTs
(which were enabled by the call acexMRTEnableRT() can be started by passing a -1
into the second parameter of acexMRTStart(). The same mechanism also stands for
the acexMRTStop() function.

S16BIT nResult;

/* Start the all Remote Terminals */
nResult = acexRTStart(
 0, /* LDN */
 -1); /* Start all RTs */

if(nResult)
 printf(“acexRTStart Error: Code %d\n”, nResult);

Code Example 97. Starting the Remote Terminal (RT)

S16BIT nResult;

/* Stop all Remote Terminals (RT) */
nResult = acexRTStop(
 0, /* LDN */
 -1); /* LDN */

if(nResult)
 printf(“acexRTStop Error: Code %d\n”, nResult);

Code Example 98. Stopping the Remote Terminal (RT)

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

185

3.3.5.5 Consuming Data

Just as in the single Remote Terminal mode (ACE_MODE_RT), the Multi-RT mode
will behave in the same fashion when consuming monitored data, either via the
Command Stack/Data Block access or the Host Buffer. For more information on
consuming data see section 3.3.4.6.

3.3.5.5.1 Mode Code Support

The AceXtreme C SDK Multi-RT supports all MIL-STD-1553B Mode Codes. Please
reference DDC’s MIL-STD-1553 Designer’s Guide for more information on individual
Mode Code definitions.

3.3.5.5.2 Reading and Writing Mode Code Data

The data portion of Mode Codes (that have associated data) is stored internally and
can be accessed at any time via the aceRTModeCodeReadData() and
aceRTModeCodeWriteData() functions.

S16BIT nResult;
U16BIT nMCData;

/* Read Mode Code Data for RT 1 */
nResult = acexMRTReadRTModeCodeData(
 0, /* LDN */
 1, /* RT Address */
 ACE_RT_MCDATA_RX_SYNCHRONIZE, /* “Synchronize” MC */
 &nMCData); /* MC Data Storage */

if(nResult)
 printf(“acexMRTReadRTModeCodeData Error: Code %d\n”, nResult);

Code Example 99. Reading Mode Code Data for “Synchronize”(10001) for RT
Address 1

Note: In order for Mode Codes to be properly processed, they need to be “Legal”.
See Section 3.3.4.5 on how to legalize Commands.

3.3.5.5.3 Mode Code Events

The AceXtreme C SDK Multi-Remote Terminal has the ability to notify the user when
a specific Mode Code has been received (via an Interrupt Event). This is

http://www.ddc-web.com/
http://www.ddc-web.com/Products/MIL-STD-1553/DesignersGuide.aspx

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

186

accomplished via the aceRTModeCodeIrqEnable() function. For each Mode Code
Family, an individual (applicable) Mode Code can be configured to generate an
ACE_IMR1_RT_MODE_CODE event when received. (See Section 3.2.3 on how to
configure the ACE_IMR1_RT_MODE_CODE event.)

Table 72. Mode Code Family Types
Family Type Description

ACE_RT_MCTYPE_RX_NO_DATA “Own Address” RT-Receive Mode Codes without Data

ACE_RT_MCTYPE_RX_DATA “Own Address” RT-Receive Mode Codes with Data

ACE_RT_MCTYPE_TX_NO_DATA “Own Address” RT-Transmit Mode Codes without Data

ACE_RT_MCTYPE_TX_DATA “Own Address” RT-Transmit Mode Code with Data

ACE_RT_MCTYPE_BCDT_RX_NO_DATA Broadcast RT-Receive Mode Code without Data

ACE_RT_MCTYPE_BCST_RX_DATA Broadcast RT-Receive Mode Code with Data

ACE_RT_MCTYPE_BCST_TX_NO_DATA Broadcast RT-Transmit Mode Code without Data

ACE_RT_MCTYPE_BCST_TX_DATA Broadcast RT-Transmit Mode Code with Data

Table 73. Mode Code Interrupt Event Options
Mode Code Value Description Applicable Family

ACE_RT_MCIRQ_DYN_BUS_CTRL Dynamic Bus Control ACE_RT_MCTYPE_TX_NO_DATA

ACE_RT_MCIRQ_SYNCHRONIZE Synchronize

ACE_RT_MCTYPE_RX_DATA
ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_TX_DATA
ACE_RT_MCTYPE_BCST_RX_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RTMCIRQ_TRNS_STATUS Transmit Status Word ACE_RT_MCTYPE_TX_NO_DATA

ACE_RT_MCIRQ_INIT_SELF_TEST Initiate Self-Test
ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_TRNS_SHUTDOWN Transmitter Shutdown
ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_OVR_TRNS_SHUTDOWN Override Transmitter
Shutdown

ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_INH_TERM_FLAG Inhibit terminal flag bit
ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_OVR_INH_TERM_FLG Override inhibit
terminal flag bit

ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_RESET_REMOTE_TERM Reset remote terminal
ACE_RT_MCTYPE_TX_NO_DATA
ACE_RT_MCTYPE_BCST_TX_NO_DATA

ACE_RT_MCIRQ_TRNS_VECTOR Transmit vector word ACE_RT_MCTYPE_TX_DATA

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

187

Table 73. Mode Code Interrupt Event Options
Mode Code Value Description Applicable Family

ACE_RT_MCIRQ_TRNS_LAST_CMD Transmit last
command ACE_RT_MCTYPE_TX_DATA

ACE_RT_MCIRQ_TRNS_BIT Transmit bit word ACE_RT_MCTYPE_TX_DATA

ACE_RT_MCIRQ_SEL_TRNS_SHUTDOWN Selected transmitter
shutdown

ACE_RT_MCTYPE_RX_DATA
ACE_RT_MCTYPE_BCST_RX_DATA

ACE_RT_MCIRQ_OVRD_SEL_TRNS_SHUTDWN Override selected
transmitter shutdown

ACE_RT_MCTYPE_RX_DATA
ACE_RT_MCTYPE_BCST_RX_DATA

S16BIT nResult;

/* Enable Mode Code Event */
nResult = acexMRTEnableRTModeCodeIrq(
 0, /* LDN */
 1, /* RT Address 1 */
 ACE_RT_MCTYPE_TX_DATA, /* TX Mode Code */
 ACE_RT_MCIRQ_TRNS_VECTOR); /* Transmit Vec. Wrd */

if(nResult)
 printf(“acexMRTEnableRTModeCodeIrq Error: Code %d\n”, nResult);

Code Example 100. Enabling an “Transmit Vector Word” Mode Code Interrupt Event

3.3.5.6 Command Legalization

A “Legal Command” is a 1553 Command Word that is acceptable to be processed by
the configured Remote Terminal. Since a particular RT may not be able to receive all
valid 1553 Commands, the AceXtreme C SDK allows all invalid command words to
be deemed illegal. If an illegal command word is sent to the DDC Remote Terminal to
be processed by RT, the RT will return a Status Word with the Message Error (Bit 10)
Set. Commands can be legalized by Address (Broadcast or “own address”), RT
Transmit or Receive, Subaddress, and Word Count (including Mode Code
commands).

Note: Entries in the Command Legalization Lookup Table can be “Illegalized” and
queried in a similar fashion using the aceRTMsgLegalityDisable() and
aceRTMsgLegalityStatus() functions.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

188

Table 74. Command Legalization Lookup Table
SUBADDRESS 0

Own Addr /
Broadcast

Command
Direction Word Count / Mode Code (32-bit Value)

OWN (1) TX (1) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

OWN (1) RX (0) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

BCST (0) RX (0) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

•
•
•

•
•
•

•
•
•

SUBADDRESS 31

Own Addr /
Broadcast

Command
Direction Word Count / Mode Code (32-bit Value)

OWN (1) TX (1) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

OWN (1) RX (0) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

BCST (0) RX (0) Each binary value corresponds to WC/MC value
(i.e. 0x00000100 is Word Count of 8)

Note: By default, all 1553 Command Words are marked ILLEGAL until they are
“legalized” via the aceRTDataBlkMapToSA() or aceRTMsgLegalityEnable()
functions.

S16BIT nResult;
#define RT_ADDRESS 10

/* Legalize Command Word */
nResult = acexMRTEnableRTMsgLegality(
 0, /* LDN */
 RT_ADDRESS, /* RT address */
 1, /* Own address (not BCAST) */
 1, /* Transmit Messages */
 19, /* Subaddress 19 */
 0xFFFFFFFF); /* “All” Word Counts */

if(nResult)
 printf(“acexMRTEnableRTMsgLegality Error: Code %d\n”, nResult);

Code Example 101. Legalizing a Specific 1553 Command Word
(“Own Addr”, TX, SA19, All Word Counts)

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

189

3.3.5.7 Using Interrupt Events

Some applications may benefit from event notifications regarding the state of Remote
Terminal. The following events directly relate to the Remote Terminal (RT) mode of
operation. For information on how to configure events and callbacks, see Section
3.2.3.

Table 75. RT Interrupt Event Options
Event Description

ACE_IMR1_RT_MODE_CODE (Bit 1) Enable RT Mode Code Events

ACE_IMR1_RT_SUBADDR_EOM (Bit 4) Enable RT Subaddress Access Events

ACE_IMR1_RT_CIRCBUF_ROVER (Bit 5) Indicates an RT Circular Buffer has rolled over

ACE_IMR1_TT_ROVER (Bit 6) Indicates the Hardware Timetag has rolled over

ACE_IMR1_BCRT_CMDSTK_ROVER (Bit 12) Indicates the RT Command Stack has reached rolled over

ACE_IMR2_RT_CIRC_50P_ROVER Indicates an RT Circular Buffer reached the 50% mark

ACE_IMR2_RT_CSTK_50P_ROVER Indicates the RT Command Stack reached the 50% mark

ACE_IMR2_RT_ILL_CMD Indicates the RT received an illegal command

3.3.5.8 MRT Response Time

The AceXtreme C SDK supports a programmable response time for the RTs on a
Multi-Function AceXtreme Device. The programmable response time allows the user
the control over when the Remote Terminal will respond to a MIL-STD-1553 command
word.

The function acexMRTRespTimeEnable() and acexMRTRespTimeDisable()can be
utilized to enable or disable the programmability of the RT’s response time. The
function acexMRTSetRespTime() can then be used to specify the RT’s response
time. The second parameter passed into acexMRTSetRespTime() represents the
RT address, while the third parameter uses a range of 7 to 60 to represent the
minimum and maximum values. A value of 7 represents 3.5 µseconds while a 60
represents 30 µseconds.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

190

S16BIT nResult;
S8BIT S8RTAddr =1;
U32BIT u32Time = 28;

/* Enable RT response time Command Word */
nResult = acexMRTRespTimeEnable(
 0, /* LDN */
 s8RTAddr); /* RT address */

if(nResult)
 printf(“acexMRTRespTimeEnable Error: Code %d\n”, nResult);

/* Enable RT response time Command Word */
nResult = acexMRTSetRespTime(
 0, /* LDN */
 s8RTAddr, /* RT address */
 u32Time); /* RT response time of 14 µseconds */

if(nResult)
 printf(“acexMRTSetRespTime Error: Code %d\n”, nResult);

Code Example 102. Configuring RT 1’s Response Time Value.

Note: AceXtreme Multi-Function Devices Only

3.3.5.9 MRT Response Timeout

The AceXtreme C SDK supports a programmable response timeout for the RTs on a
Multi-Function AceXtreme Device. The programmable response timeout allows the
user the control over when the Remote Terminal will designate a particular message
as a no response and wait for the next message. Setting the RT’s Response Time
value is used for RT to RT commands.

The Remote Terminal with the AceXtreme C SDK manual supports a programmable
timeout from 3.5 µseconds to 30 µseconds in steps of 500 nanoseconds. The function
acexMRTSetRespTimeout() is used to program the timeout value for the Remote
Terminal. The second parameter passed into acexMRTSetRespTimeout()
represents the RT address, while the third parameter uses a range of 7 to 60 to
represent the minimum and maximum values. A value of 7 represents 3.5 µseconds
while a 60 represents 30 µseconds.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

191

S16BIT nResult;
S8BIT S8RTAddr =1;
U32BIT u32Timeout = 28;

/* Set Response timeout value for RT 1 */
nResult = acexMRTSetRespTimeout(
 0, /* LDN */
 s8RTAddr, /* RT address */
 U32Timeout); /* Timeout value 14 µseconds */

if(nResult)
 printf(“acexMRTSetRespTimeout Error: Code %d\n”, nResult);

Code Example 103. Configuring RT 1’s Response Timeout Value.

Note: AceXtreme Multi-Function Devices Only

3.3.5.10 DBC Acceptance

The Multi-Function AceXtreme hardware has the ability to accept the Dynamic Bus
Controller mode code and accept command of the data bus. To enable DBC on an
RT basis, the function acexMRTDbcEnable() must be called. The function requires
the LDN of the channel, the RT address, and the hold-off time. When an RT accepts
control of the data bus via the Dynamic bus controller mode code, a delay value must
be specified in order for the RT to deactivate, and configure itself as the bus controller.
This delay value is specified as the “hold-off time” in the AceXtreme C SDK.

S16BIT nResult;

/* Enable Dynamic Bus Controller for RT. */
nResult = acexMRTDbcEnable(0, /* LDN */
 1, /* RT Address */
 40); /* RT Holdoff time */

if(nResult)
 printf(“acexMRTDbcEnable Error: Code %d\n”,nResult);

Code Example 104. Clearing Discrete Configuration

Acceptance of the Dynamic Bus Controller mode code can also be disabled on an RT
basis with the function acexMRTDbcDisable(). This function requires the LDN, and
the RT address which is disabling acceptance of DBC.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

192

3.3.5.11 MRT Intermessage Routines

The Multi-Function AceXtreme boards have support for Intermessage routines (IMRs).
IMRs are a set of tasks executed between messages. In Multi-RT mode for a Multi-
Function AceXtreme Device IMRs are assigned to the RT’s subaddress.

3.3.5.11.1 MRT IMR types

Intermessage routines can be categorized into two groups, IMRs used for message
response, and IMRs used for discrete and triggers. The IMRS listed in Table 76 may
be “Logically OR’ed” together to form multiple intermessage actions.

Table 76. MRT Intermessage Routines
Intermessage Routine MacRos Description

IMRS using Discretes and Triggers
ACEX_MRT_IMR_SET_DISCRETE_X Sets discrete output to a logic 1. X is 1 – 4

ACEX_MRT_IMR_RST_DISCRETE_X Resets discrete output to a logic 0. X is 1 – 4

ACEX_BC_IMR_WAIT_FOR_INPUT_TRIG BC operation will be paused until an external BC trigger
signal is detected.

IMRS used for Message Response
ACEX_MRT_IMR_NO_RESP_BOTH_BUS Disables the current RT’s transmitter on both buses.

ACEX_MRT_IMR_SET_SRQ_IN_STATUS Indicates the service request bit in the status of the last RT to
respond will be set.

ACEX_MRT_IMR_RST_SRQ_IN_STATUS Indicates the service request bit in the status of the last RT to
respond will be cleared.

ACEX_MRT_IMR_SET_TFG_IN_STATUS Indicates the terminal flag bit in the status of the last RT to
respond will be set.

ACEX_MRT_IMR_RST_TFG_IN_STATUS Indicates the terminal flag bit in the status of the last RT to
respond will be cleared.

ACEX_MRT_IMR_SET_BSY_IN_STATUS Busy bit in the status of the last RT to respond will be set.

ACEX_MRT_IMR_RST_BSY_IN_STATUS Indicates the busy bit in the status of the last RT to respond
will be cleared.

3.3.5.11.2 Usage

IMRs are mapped to the RT’s subaddress, and can be unique for receive, transmit
and broadcast commands. The message types can also be “Logically OR’ed”
together to share the IMRs for all message types. To link an IMR to a subaddress the
function acexMRTImrMapToRTSA() can be used. The function requires the LDN,
the RT’s address, the sub address, message type and the IMR type.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

193

S16BIT nResult;

/* BC IMR Trigger Select */
nResult = acexMRTImrMapToRTSA(
 0, /* LDN */
 1, /* RT Address */
 2, /* SA Address */
 ACE_RT_MSGTYPE_RX, /* Message Type */
 ACEX_MRT_IMR_NO_RESP_BOTH_BUS, /* IMR */

if(nResult)
 printf(“acexMRTImrMapToRTSA Error: Code %d\n”,nResult);

Code Example 105. Configure Discrete to BC IMR

3.3.5.11.3 IMR and Triggers

MRT intermessage routines may also generate or be generated by external triggers
through the discrete I/O pins on the Multi-Function AceXtreme board. The function
acexMRTImrTrigSelect() to link a discrete I/O pin to the IMRs using the discrete IO
pins or the wait for trigger IMR. The function requires the LDN, and the discrete pin
number (0 – 15 depending on the number of discrete on the Multi-Function AceXtreme
board).

S16BIT nResult;

/* MRT IMR Trigger Select */
nResult = acexMRTImrTrigSelect(0, /* LDN */
 1); /* discrete 1 */

if(nResult)
 printf(“acexMRTImrTrigSelect Error: Code %d\n”,nResult);

Code Example 106. Configure Discrete to MRT IMR

3.3.6 Combination Modes

The AceXtreme C SDK has the ability to run certain modes of operation
simultaneously. By running more than one mode at one time, the user can have a
variety of information and features readily available.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

194

3.3.6.1 Combined RT and MT-I (ACE_MODE_RTMTI)

The AceXtreme C SDK supports running the MT-I Monitor simultaneously with
Remote Terminal operation. Excluding some caveats covered in this section, the
functionality of MT-I and RT mode remain intact, as covered in their respected
sections. See Sections 3.3.2 and 3.3.4 for all available MT-I and RT functionality

3.3.6.1.1 Configuration

The AceXtreme C SDK’s combined MT-I Monitor / Remote Terminal
(ACE_MODE_RTMTI) has numerous configuration options that should be addressed
before any data processing is attempted. Configuration is accomplished via the
aceRTMTIConfigure() function and is typically called after aceInitialize().

Note: Since both modes are configured via the aceRTMTIConfigure() function,
there is no need to call each modes individual configuration function
[aceRTConfigure() and aceMTIConfigure()].

Table 77. RTMT-I Configuration Parameters

Variable Description Valid Options or Range

wCmdStkSize Size (in words) of the RT command stack

ACE_RT_CMDSTK_256-> 256 words
ACE_RT_CMDSTK_512-> 512 words
ACE_RT_CMDSTK_1K-> 1K words
ACE_RT_CMDSTK_2K-> 2K words (default)

u32DevBufByteSize Size of DDC hardware memory (bytes)
allocated for MT-I monitored data

MTI_DEVBUF_SIZE_128K = 128 KB
MTI_DEVBUF_SIZE_256K = 256 KB
MTI_DEVBUF_SIZE_512K = 512 KB
MTI_DEVBUF_SIZE_1M = 1 MB

u32NumBufBlks Number of memory blocks allocated for
chapter 10 data packets Target Host Memory Dependent

u32BufBlkByteSize Bytes allocated for MT-I Data Packet buffer Target Host Memory Dependent

fZeroCopyEnable Enable Zero-Copy (Needs to be supported
by target Operating System)

TRUE = Enable Zero-Copy
FALSE = Disable Zero-Copy

u32IrqDataLen

Interrupt Event Option
(MTI_NUM_WORDS): Number of data
words necessary to generate an MT-I Data
Packet

System Dependent

u32IrqMsgCnt
Interrupt Event Option (MTI_NUM_MSGS):
Number of messages necessary to
generate an MT-I Data Packet

System Dependant

u16IrqTimeInterval

Interrupt Event Option
(MTI_TIME_MSG_TRIG_INT)
(MTI_TIME_INT)
Time Limit (us) necessary to generate a
MT-I Data Packet

System Dependent

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

195

Table 77. RTMT-I Configuration Parameters
Variable Description Valid Options or Range

u32IntConditions Interrupt Events enabled to generate MT-I
Data Packet

MTI_OVERFLOW_INT = Generate packet after
DDC Hardware Overflow
MTI_HOST_INT = Generate packet after Host
Request
MTI_TIME_MSG_TRIG_INT = Generate Packet
after time limit reached, triggered by 1553
message
MTI_TIME_INT = Generate Packet after time
limit reached
MTI_NUM_MSGS = Generate Packet after
receiving “X” 1553 Messages
MTI_NUM_WORDS = Generate Packet after
receiving “X” words

u16Ch10ChnlId IRIG-106 Chapter 10 assigned Channel ID
for this device 0 - 65535

u8HdrVer Reserved for Future Use Reserved (0)

u8RelAbsTime Reserved for Future Use Reserved (0)

u8Ch10Checksum Reserved for Future Use Reserved (0)

dwOptions Configuration Options See Table 78

The following options can be “logically OR’ed” into the last parameter (dwOptions) of
aceRTMTIConfigure().

Table 78. RTMT-I Configuration Options
Options Description

ACE_RT_OPT_CLR_SREQ
Sets the Clear Service Request bit 2 to a 1. This will clear a service request after a tx vector
word.

ACE_RT_OPT_LOAD_TT
With the reception of a Synchronize (with data) mode command, it will cause the Data Word
from the Synchronize message to be loaded into the Hardware Time Tag Register.

ACE_RT_OPT_CLEAR_TT
With the reception of a Synchronize (without data) mode command, it will cause the value of
the Hardware Time Tag Register to clear to 0x0000.

ACE_RT_OPT_OVR_DATA

This option affects the operation of the RT subaddress circular buffer memory management
scheme. The Lookup Table address pointer will only be updated following a transmit message
or following a valid receive or broadcast message to the respective Rx/Bcst subaddress. If this
option is enabled, the Lookup Table pointer will not be updated following an invalid receive or
broadcast message. In addition, an interrupt request for a circular buffer rollover condition (if
enabled) will only occur following the end of a transmit message during which the last location
in the circular buffer has been read or following the end of a valid receive or Broadcast
message in which the last location in the circular buffer has been written to.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

196

Table 78. RTMT-I Configuration Options
Options Description

ACE_RT_OPT_OVR_MBIT

Enabling this option will cause a mode code Command Word with a T/R* bit of 0 and an MSB
of the mode code field of 0 will be considered a defined (reserved) mode Command Word. The
DDC hardware will respond to such a command and the Message Error bit will not become
set.

ACE_RT_OPT_ALT_STS
Enabling this option will cause all 11 RT Status Word bits to be under control of the User via
the aceRTStatusBitsSet() and aceRTStatusBitsClear() functions.

ACE_RT_OPT_IL_RX_D
Enabling this option will cause the device to not store the received data words if the DDC
hardware device receives a receive command that has been illegalized.

ACE_RT_OPT_BSY_RX_D

If a particular Command Word (broadcast, T/R* bit, subaddress) has been programmed to be
busy by means of the Busy lookup table and the RT receives a receive command, the 1553
device will respond with its Status Word with the Busy bit set and will not store the received
Data Words.

See Section 0 on modifying the Busy Lookup Table.

ACE_RT_OPT_SET_RTFG

If enabled, the Terminal flag status word bit will also become set if either a transmitter timeout
(660.5 μs) condition had occurred or the ACE RT had failed its loopback test for the previous
non-broadcast message. The loopback test is performed on all non-broadcast messages
processed by the RT. The received version of all transmitted words is checked for validity
(sync and data encoding, bit count, parity) and correct sync type. In addition, a 16-bit
comparison is performed on the received version of the last word transmitted by the RT. If any
of these checks or comparisons do not verify, the loopback test is considered to have failed.

ACE_RT_OPT_1553A_MC

If this option is chosen, the RT considers only subaddress 0 to be a mode code subaddress.
Subaddress 31 is treated as a standard nonmode code subaddress. In this configuration, the
1553 hardware will consider valid and respond only to mode code commands containing no
data words. In this configuration, the RT will consider all mode commands followed by data
words to be invalid and will not respond. In addition the 1553 hardware will not decode for the
MIL-STD-1553B "Transmit Status" and "Transmit Last Command" mode codes. As a result,
the internal RT Status Word Register will be updated as a result of these commands.

ACE_RT_OPT_MC_O_BSY

If a particular Command Word (broadcast, T/R* bit, subaddress) has been programmed to be
busy by means of the Busy Lookup Table, the 1553 hardware will transmit its Status Word with
its BUSY bit set, followed by a single Data Word, in response to either a Transmit Vector Word
mode command or a Reserved transmit mode command with data (transmit mode codes
10110 through 11111).

See Section 0 on modifying the Busy Lookup Table.

ACE_RT_OPT_BCST_DIS The 1553 hardware will not recognize RT address 31 as the broadcast address. In this
instance, RT address 31 may be used as a discrete RT address.

ACE_MT_OPT_BCST_DIS Disable Broadcast Address (RT 31) for the Monitor

ACE_MT_OPT_1553A_MC Enable 1553A Mode Code Support for the Monitor

3.3.6.1.2 Activating the RT and MT-I Monitor

Once the MT-I Monitor and Remote Terminal have been configured and the Monitor
RT Filtering has been setup, the RTMT-I Engine is ready to begin processing 1553
bus traffic.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

197

3.3.6.1.2.1 Starting and Stopping

The MT-I Monitor / Remote Terminal can be started and stopped dynamically by the
user. Starting and Stopping is accomplished by the aceRTMTIStart() and
aceRTMTIStop() functions.

Note: When running in ACE_RTMTI_MODE, the functions aceRTMTIStart() and
aceRTMTIStop() must be used to start and stop both modes (RT and MT-I).
While in this mode, the individual start and stop functions of each mode will
not operate.

Note: By Stopping the Monitor with aceRTMTIStop(), any traffic that has not been
consumed by the user will be discarded. To temporarily pause monitoring
without discarding data, see Section 3.3.3.3.2. Please note that is not
possible to pause the Remote Terminal.

S16BIT nResult;

/* Start the RTMT-I Monitor */
nResult = aceRTMTIStart(
 0); /* LDN */

if(nResult)
 printf(“aceRTMTIStart Error: Code %d\n”, nResult);

Code Example 107. Starting the MT-I Monitor and Remote Terminal

S16BIT nResult;

/* Stop the RTMT-I Monitor */
nResult = aceRTMTIStop(
 0); /* LDN */

if(nResult)
 printf(“aceRTMTIStop Error: Code %d\n”, nResult);

Code Example 108. Stopping the MT-I Monitor and Remote Terminal

3.3.6.1.2.2 MT-I Continue and Pause

The aceMTIPause() function will temporarily pause the monitoring of bus traffic,
leaving all unconsumed data intact. After pausing, bus monitoring can be restarted
using the aceMTIContinue() function.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

198

Note: The Pause and Continue functionality referenced above will only affect the
Monitor (MT-I) portion of this mode. The Remote Terminal (RT) portion will be
unaffected.

3.3.6.2 Combined RT and MT (ACE_MODE_RTMT)

The AceXtreme C SDK supports running the Classic Monitor simultaneously with
Remote Terminal operation. Excluding some caveats covered in this section, the
functionality of MT and RT mode remain intact, as covered in their respected sections.
See Sections 3.3.3 and 3.3.4 for all available MT and RT functionality.

Note: Classic Monitor support should only be used for existing applications or if the
target DDC hardware is not of the E²MA or AceXtreme Family. New designs
using E²MA or AceXtreme hardware that require a combined Monitor and
Remote Terminal should use RTMT-I mode (see Section 3.3.6.1).

3.3.6.2.1 Configuration

The AceXtreme C SDK’s combined Classic Monitor / Remote Terminal mode has
numerous configuration options that should be addressed before any data processing
is attempted. Configuration is accomplished via the aceRTMTConfigure() function
and is typically called after aceInitialize().

Table 79. RTMT Configuration Parameters
Variable Description Valid Options

wRTCmdStkSize Size (in words) of the Remote
Terminal (RT) command stack

ACE_RT_CMDSTK_256-> 256 words
ACE_RT_CMDSTK_512-> 512 words
ACE_RT_CMDSTK_1K -> 1K words
ACE_RT_CMDSTK_2K -> 2K words (default)

wMTStkType Stack type to use for Monitor (MT)
command and data stacks

ACE_MT_SINGLESTK = Single-Buffered Stack (default)
ACE_MT_DOUBLESTK = Double-Buffered Stack

wMTCmdStkSize Size (in words) of the Monitor (MT)
command stack

ACE_MT_CMDSTK_256-> 256 words
ACE_MT_CMDSTK_1K -> 1K words
ACE_MT_CMDSTK_4K -> 4K words (default)
ACE_MT_CMDSTK_16K-> 16K words

wMTDataStkSize Size (in words) of the Monitor (MT)
data stack

ACE_MT_DATASTK_512-> 512 words
ACE_MT_DATASTK_1K-> 1K words
ACE_MT_DATASTK_2K-> 2K words
ACE_MT_DATASTK_4K-> 4K words
ACE_MT_DATASTK_8K-> 8K words
ACE_MT_DATASTK_16K-> 16K words (default)
ACE_MT_DATASTK_32K-> 32K words
ACE_MT_DATASTK_64K-> 64K words

dwOptions RTMT Configuration Options See Table 80

The following options can be “logically OR’ed” into the Sixth parameter (dwOptions) of
aceRTMTConfigure().

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

199

Table 80. RTMT Configuration Options
Options Description

ACE_RT_OPT_CLR_SREQ Sets the Clear Service Request bit 2 to a 1. This will clear a service request after a tx vector
word.

ACE_RT_OPT_LOAD_TT With the reception of a Synchronize (with data) mode command, it will cause the Data Word
from the Synchronize message to be loaded into the Hardware Time Tag Register.

ACE_RT_OPT_CLEAR_TT With the reception of a Synchronize (without data) mode command, it will cause the value of the
Hardware Time Tag Register to clear to 0x0000.

ACE_RT_OPT_OVR_DATA

This option affects the operation of the RT subaddress circular buffer memory management
scheme. The Lookup Table address pointer will only be updated following a transmit message or
following a valid receive or broadcast message to the respective Rx/Bcst subaddress. If this
option is enabled, the Lookup Table pointer will not be updated following an invalid receive or
broadcast message. In addition, an interrupt request for a circular buffer rollover condition (if
enabled) will only occur following the end of a transmit message during which the last location in
the circular buffer has been read or following the end of a valid receive or Broadcast message in
which the last location in the circular buffer has been written to.

ACE_RT_OPT_OVR_MBIT
Enabling this option will cause a mode code Command Word with a T/R* bit of 0 and an MSB of
the mode code field of 0 will be considered a defined (reserved) mode Command Word. The
DDC hardware will respond to such a command and the Message Error bit will not become set.

ACE_RT_OPT_ALT_STS Enabling this option will cause all 11 RT Status Word bits to be under control of the User via the
aceRTStatusBitsSet() and aceRTStatusBitsClear() functions.

ACE_RT_OPT_IL_RX_D Enabling this option will cause the device to not store the received data words if the DDC
hardware device receives a receive command that has been illegalized.

ACE_RT_OPT_BSY_RX_D

If a particular Command Word (broadcast, T/R* bit, subaddress) has been programmed to be
busy by means of the Busy lookup table and the RT receives a receive command, the 1553
device will respond with its Status Word with the Busy bit set and will not store the received Data
Words.
See Section 0 on modifying the Busy Lookup Table.

ACE_RT_OPT_SET_RTFG

If enabled, the Terminal flag status word bit will also become set if either a transmitter timeout
(660.5 μs) condition had occurred or the ACE RT had failed its loopback test for the previous
non-broadcast message. The loopback test is performed on all non-broadcast messages
processed by the RT. The received version of all transmitted words is checked for validity (sync
and data encoding, bit count, parity) and correct sync type. In addition, a 16-bit comparison is
performed on the received version of the last word transmitted by the RT. If any of these checks
or comparisons do not verify, the loopback test is considered to have failed.

ACE_RT_OPT_1553A_MC

If this option is chosen, the RT considers only subaddress 0 to be a mode code subaddress.
Subaddress 31 is treated as a standard nonmode code subaddress. In this configuration, the
1553 hardware will consider valid and respond only to mode code commands containing no data
words. In this configuration, the RT will consider all mode commands followed by data words to
be invalid and will not respond. In addition, the 1553 hardware will not decode for the MIL-STD-
1553B "Transmit Status" and "Transmit Last Command" mode codes. As a result, the internal
RT Status Word Register will be updated as a result of these commands.

ACE_RT_OPT_MC_O_BSY

If a particular Command Word (broadcast, T/R* bit, subaddress) has been programmed to be
busy by means of the Busy Lookup Table, the 1553 hardware will transmit its Status Word with
its BUSY bit set, followed by a single Data Word, in response to either a Transmit Vector Word
mode command or a Reserved transmit mode command with data (transmit mode codes 10110
through 11111).
See Section 0 on modifying the Busy Lookup Table.

ACE_RT_OPT_BCST_DIS The 1553 hardware will not recognize RT address 31 as the broadcast address. In this instance,
RT address 31 may be used as a discrete RT address.

ACE_MT_OPT_BCST_DIS Disable Broadcast Address (RT 31) for the Monitor

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

200

Table 80. RTMT Configuration Options
Options Description

ACE_MT_OPT_1553A_MC Enable 1553A Mode Code Support for the Monitor

3.3.6.2.2 Activating the RT and Classic Monitor

Once the Classic Monitor and Remote Terminal have been configured and the Monitor
RT Filtering has been setup, the RTMT Engine is ready to begin processing 1553 bus
traffic.

3.3.6.2.2.1 Starting and Stopping

The Classic Monitor / Remote Terminal can be started and stopped dynamically by
the user. Starting and Stopping is accomplished by the aceRTMTStart() and
aceRTMTStop() functions.

Note: When running in ACE_RTMT_MODE, the functions aceRTMTStart() and

aceRTMTStop() must be used to start and stop both modes (RT and MT).
While in this mode, the individual start and stop functions of each mode will
not operate.

Note: By stopping the Monitor with aceRTMTStop(), any traffic that has not been
consumed by the user will be discarded. To temporarily pause monitoring
without discarding data, see Section 3.3.3.3.2. Please note that is not possible
to pause the Remote Terminal.

S16BIT nResult;

/* Start the RTMT Monitor */
nResult = aceRTMTStart(0); /* LDN */

if(nResult)
 printf(“aceRTMTStart Error: Code %d\n”, nResult);

Code Example 109. Starting the MT Monitor and Remote Terminal

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

201

S16BIT nResult;

/* Stop the RTMT Monitor */
nResult = aceRTMTStop(0); /* LDN */

if(nResult) printf(“aceRTMTStop Error: Code %d\n”, nResult);

Code Example 110. Stopping the MT Monitor and Remote Terminal

3.3.6.2.2.2 MT Continue and Pause

The aceMTPause() function will temporarily pause the monitoring of bus traffic,
leaving all unconsumed data intact. After pausing, bus monitoring can be restarted
using the aceMTContinue() function.

Note: The Pause and Continue functionality referenced above will only affect the
Classic Monitor (MT) portion of this mode. The Remote Terminal (RT) portion
will be unaffected.

3.3.6.3 Combined BC and MT-I (ACE_MODE_BCMTI)

The AceXtreme C SDK supports running the BC and MT-I Monitor with an AceXtreme
device. The combined BC and MT-I mode has several configuration options. These
options can be made by calling aceBCConfigure(). For more information of these
configurations, see Sections 3.3.1 and 3.3.2 for the BC and MT-I configurations.

Note: The ACE_MODE_BCMTI is only supported by AceXtreme devices.

3.3.6.4 Combined MRT and MT-I (ACE_MODE_MRTMTI)

The AceXtreme C SDK supports running the Multi-RT and MT-I Monitor with an
AceXtreme device. The combined Multi-RT and MT-I mode has several configuration
options. These options can be made by calling acexMRTConfigure() and
aceMTIConfigure(). For more information of these configurations, see Sections 3.3.4
and 3.3.2 for the RT and MT-I configurations.

Note: The ACE_MODE_MRTMTI is only supported by AceXtreme devices.

3.3.6.5 AceXtreme Multi-Function Modes

The Multi-Function AceXtreme devices support a running the Bus Controller, all 31
RTs and a monitor concurrently. There are two supported modes of operation, a
combined BC and Multi-RT mode, and a BC, Multi-RT, and MTI-I mode.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

202

3.3.6.5.1 Combined BC, MRT and MT-I (ACE_MODE_ALL)

The AceXtreme C SDK supports running the Bus Controller, Multi-RT and MT-I
Monitor with an AceXtreme device. The combined Bus Controller, Multi-RT and MT-I
mode has several configuration options. These options can be made by calling
aceBCConfigure(), acexMRTConfigure() and aceMTIConfigure(). For more
information of these configurations, see Sections 3.3.1, 3.3.2 and 3.3.5 for the BC,
MRT, and MTI-I configurations.

Note: The ACE_MODE_ALL is only supported by AceXtreme devices.

3.3.6.5.2 BC Response timeout

The AceXtreme C SDK supports a programmable response timeout for the Bus
Controller with a Multi-Function AceXtreme Device. The programmable response
timeout allows the user the control over when the Bus Controller will designate a
particular message as a no response and move onto the next message.

The Bus Controller with the AceXtreme C SDK manual supports a programmable
timeout from 3.5 µseconds to 30 µseconds in steps of 500 nanoseconds. The function
acexBCSetRespTimeout() is used to program the timeout value for the Bus
Controller. The second parameter passed into acexBCSetRespTimeout() uses a
range of 7 to 60 to represent the minimum and maximum values. A value of 7
represents 3.5 µseconds while a 60 represents 30 µseconds.

S16BIT nResult;
U32BIT u32Timeout = 28;

/* Set Response timeout value for RT 1 */
nResult = acexBCSetRespTimeout(
 0, /* LDN */
 U32Timeout); /* Timeout value 14 µseconds */

if(nResult)
 printf(“acexBCSetRespTimeout Error: Code %d\n”, nResult);

Code Example 111. Configuring the BC’s Response timeout value.

Note: AceXtreme Multi-Function Devices Only

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

203

3.3.7 Error Injection

The AceXtreme C SDK support error injection with DDC’s Multi Function AceXtreme
devices. Errors can be injected on either a Bus Controller Message or via an
emulated RT on the Multi-Function AceXtreme Device. Error injection is supported
on a message by message basis allowing one error to be injected per message.

Note: AceXtreme Multi-Function Devices Only

3.3.7.1 BC Error Injection

The Bus Controller on a Multi-Function AceXtreme Device supports error injection on
a message by message basis. The error types the can be injected by the BC are
Length Errors and Encoding Errors. Length Errors include modifying data word count,
or Bit Counter Errors for a specific message.

Data Word Count Errors include increasing or decreasing the number of data words in
a message, while Bit Count Errors allow for up to an extra three bits to be added onto
a specific word for a given message. Bit Errors also allows for up to three bits to be
removed from a word of a given message.

Encoding errors supports a Glitch or Inverse error. The Glitch error forces the output
of the encoder to an idle bus condition for a specified period of time. The Inverse
error will invert the output of the encoder for a specific time period. The Glitch and
Inverse errors allow for error types such as invalid sync patterns, parity errors and
Manchester bi-phase errors. The Glitch and Inverse errors can be anywhere in the
message (command words, or data words) with a resolution of 50 nanoseconds, and
can be injected from 50 to 3000 nanoseconds, in steps of 50 nanoseconds.

Error injection on a Multi-Function AceXtreme device operating in Bus Controller
mode can be enabled or disabled with the commands acexBCMsgErrorEnable() and
acexBCMsgErrorDisable().

After error injection has been enabled for the Bus Controller, the function
acexBCSetMsgError() is used to define the errors to be injected on a message. The
call to acexBCSetMsgError() requires three parameters, the LDN of the BC, the
Message ID of the message on which the error will be injected, and a structure
(ACEX_ERR_INJ) which indicates the error that will be injected into the message.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

204

Table 81. ACEX_ERR_INJ Structure – BC Error Injection
Event Description Valid Values

u32ErrorType The type of error being injected

ACEX_EI_NONE
ACEX_EI_WORD_COUNT
ACEX_EI_BIT_COUNT
ACEX_EI_GLITCH
ACEX_EI_INVERSE
ACEX_EI_GAP

s16WordSel Specifies the word to inject the error. 0 = CMD, 1-32 for data word

s16WordCount Number of words to be added or removed from message. -32 to -1, 0, 1 to 32 in Words

s16BitCount Number of bits to be added or removed from message -3, -2, -1, 0, 1, 2, 3 in bits

s16GapTime Amount of time between words in a message 0 – 32 µseconds

s16GlitchLoc Location of the Glitch Error
0 – 400 in 50 ns increments
(range 0 -20 µseconds)

S16GlitchDur Duration of the Glitch Error
0 – 60 in 50 ns increments
(range 0 – 3 µseconds)

s16InverseLoc Location of Inverse Error
0 – 400 in 50 ns increments
(range 0 – 20 µseconds)

s16InverseDur Duration of Inverse Error
0 – 60 in 50 ns increments
(range 0 – 3 µseconds)

U16BITStatusBitMask RT Status Bit Mask 0x0000 – 0xFFFF

U16StatusBits RT Status Bit Modification 0x0000 – 0xFFFF

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

205

S16BIT nResult;
ACEX_ERR_INJ sError;

/* Set error type to remove one word from message */
sError->u32ErrorType = ACEX_EI_WORD_COUNT;
sError->S16WordCount = -1;

/* Inject error on MSG1 */
nResult = acexBCMsgError(
 0, /* LDN */
 MSG1, /* Message 1 */
 &sErrror); /* Error Structure */

if(nResult)
 printf(“acexBCMsgError Error: Code %d\n”, nResult);

/* Enable Error injection for BC mode */
nResult = acexBCMsgErrorEnable(0); /* LDN */

if(nResult)
 printf(“acexBCMsgErrorEnable Error: Code %d\n”, nResult);

Code Example 112. Configuring the BC’s Error Injection.

The AceXtreme C SDK does not protect the user from using error types that may
conflict with one another, such as using a Glitch and Inverse error on the same word.
The table below shows a matrix of supported error injection types. Care needs to be
taken when mixing multiple error injection types.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

206

Word
Count

Bit
Count

Gap
Time Glitch Inverse

Word Count (1) (1) (1) (1)

Bit Count (1) (2) (2)

Gap Time (1)

Glitch (1) (2)

Inverse (1) (2)

LEGEND:

 = Supported Concurrent operation

 = See Notes for Compatibility

 = Invalid Concurrent operation
Notes:

1. User must ensure errors do not occur within removed words due to the Word Count error.
2. User must ensure that these errors do not occur on the removed bits due to Bit Count Error.
3. These errors are invalid if NO RSP A and NO RSP B are enabled.

Figure 35. AceXtreme BC Error Injection

3.3.7.2 RT Error Injection

The Remote Terminal on a Multi-Function AceXtreme Device supports error injection
on a message by message basis. The error types the can be injected by the RT are
Length Errors and Encoding Errors. Length Errors include modifying data word count,
or Bit Counter Errors for a specific message.

Data Word Count Errors include increasing or decreasing the number of data words in
a message, while Bit Count Errors allow for up to an extra three bits to be added onto
a specific word for a given message. Bit Errors also allows for up to three bits to be
removed from a word of a given message.

Encoding errors supports a Glitch or Inverse error. The Glitch error forces the output
of the encoder to an idle bus condition for a specified period of time. The Inverse
error will invert the output of the encoder for a specific time period. The Glitch and
Inverse errors allow for error types such as invalid sync patterns, parity errors and
Manchester bi-phase errors. The Glitch and Inverse errors can be anywhere in the
message (command words, or data words) with a resolution of 50 nanoseconds, and
can be injected from 50 to 3000 nanoseconds, in steps of 50 nanoseconds.

Error injection on a Multi-Function AceXtreme device operating in Remote Terminal
mode can be enabled or disabled with the commands acexMRTMsgErrorEnable()
and acexMRTMsgErrorDisable(). These two functions require two parameters. The

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

207

first parameter is the LDN of the device, and the second is the Remote Terminal
address.

After error injection has been enabled for the Remote Terminal, the function
acexMRTSetMsgError() is used to define the errors to be injected on a message.
The call to acexMRTSetMsgError() requires three parameters, the LDN of the BC,
RT address, and a structure (ACEX_ERR_INJ) which indicates the errors that will be
injected into the message.

Table 82. ACEX_ERR_INJ Structure – RT Error Injection
Event Description Valid Values

u32ErrorType The type of error being injected

ACEX_EI_NONE
ACEX_EI_WORD_COUNT
ACEX_EI_BIT_COUNT
ACEX_EI_GLITCH
ACEX_EI_INVERSE
ACEX_EI_GAP
ACEX_EI_NO_RESP_A
ACEX_EI_NO_RESP_B
ACEX_EI_RESP_LATE
ACEX_EI_RESP_WRONG_BUS
ACEX_EI_RESP_WRONG_ADDR
ACEX_EI_RESP_STATUS_BIT_SET

s16WordSel Specifies the word to inject the error. 0 = CMD, 1-32 for data word

s16WordCount Number of words to be added or removed from
message. -32 to -1, 0, 1 to 32 in Words

s16BitCount Number of bits to be added or removed from
message -3, -2, -1, 0, 1, 2, 3 in bits

s16GapTime Amount of time between words in a message 0 – 32 µseconds

s16GlitchLoc Location of the Glitch Error
0 – 400 in 50 ns increments
(range 0 -20 µseconds)

S16GlitchDur Duration of the Glitch Error
0 – 60 in 50 ns increments
(range 0 – 3 µseconds)

s16InverseLoc Location of Inverse Error
0 – 400 in 50 ns increments
(range 0 – 20 µseconds)

s16InverseDur Duration of Inverse Error
0 – 60 in 50 ns increments
(range 0 – 3 µseconds)

s16RespLateTime RT delays response to a command word.
7 – 60 in 50 ns increments
(range 3.5 µs – 30 µs)

s16RespWrongAddr RT responds with wrong address in status word. 0 – 31 (RT address)

U16BITStatusBitMask RT Status Bit Mask 0x0000 – 0xFFFF

U16StatusBits RT Status Bit Modification 0x0000 – 0xFFFF

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

208

S16BIT nResult;
ACEX_ERR_INJ sError;

/* Set error type to remove one word from message */
sError->u32ErrorType = ACEX_EI_RESP_LATE;
sError->S16RespLateTime = 14;

/* Inject a Late Response error on to RT1 */
nResult = acexMRTMsgError(
 0, /* LDN */
 1, /* Message 1 */
 &sErrror); /* Error Structure */

if(nResult)
 printf(“acexMRTMsgError Error: Code %d\n”, nResult);

/* Enable Error injection for MRT mode */
nResult = acexMRTMsgErrorEnable(
 0, /* LDN */
 1); /* RT address */

if(nResult)
 printf(“acexMRTMsgErrorEnable Error: Code %d\n”, nResult);

Code Example 113. Configuring the RT’s Error Injection.

The AceXtreme C SDK does not protect the user from using error types that may
conflict with one another, such as using a Glitch and Inverse error on the same word.
The table below shows a matrix of supported error injection types. Care needs to be
taken when mixing multiple error injection types.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

209

Word
Count

Bit
Count

Gap
Time Glitch Inverse

No
RSP
A

No
RSP
B

LATE
RSP

Wrong
Bus
RSP

RSP
Wrong
ADDR

Word Count (1) (1) (1) (1)

Bit Count (1) (2) (2)

Gap Time (1)

Glitch (1) (2)

Inverse (1) (2)

No RSP A (3) (3) (3)

No RSP B (3) (3) (3)

LATE RSP (3) (3)

Wrong Bus RSP (3) (3)

RSP Wrong
ADDR (3) (3)

LEGEND:

 = Supported Concurrent operation

 = See Notes for Compatibility

 = Invalid Concurrent operation

Notes:

1. User must ensure errors do not occur within removed words due to the Word Count error.
2. User must ensure that these errors do not occur on the removed bits due to Bit Count Error.
3. These errors are invalid if NO RSP A and NO RSP B are enabled.

Figure 36. AceXtreme RT Error Injection

3.3.8 Amplitude

The AceXtreme C SDK allows for software programmable transceivers on the Multi-
Function AceXtreme devices which have variable voltage transceivers. The
AceXtreme C SDK has the ability to set the amplitude on the variable voltage
transceiver with the function acexSetAmplitude(). The function acexGetAmplitude()
will return the current value of the software programmable transceivers.

3.3.9 Self-Test Capabilities (ACE_MODE_TEST)

The AceXtreme C SDK defines a Self-Test (TEST) mode to allow numerous
diagnostic tests to be executed on the DDC hardware. Each test has a specific
function and must be run independently.

Note: All Tests are memory destructive and will delete any configuration options
and/or unconsumed 1553 data residing on the DDC hardware. In addition,
while in Test Mode, the device will not be active on the 1553 bus.

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

210

After executing, every Self-Test function will return a TESTRESULT structure. This
structure will inform the user if the test passed or failed. If the test failed, expected and
actual data at the point of failure is supplied for additional debugging.

/* Test result structure /
typedef struct TESTRESULT
{
 U16BIT wResult; /* pass or fail code */
 U16BIT wExpData; /* expected data on fail */
 U16BIT wActData; /* actual data on fail */
 U16BIT wAceAddr; /* address of failure*/
 U16BIT wCount; /* test count index */

} TESTRESULT

Code Example 114. TESTRESULT Structure

3.3.9.1 Testing Hardware Registers

The AceXtreme C SDK supplies a test to verify that the DDC hardware registers are
operating properly. This test can be executed via the aceTestRegisters() function.

S16BIT nResult;
TESTRESULT sTest;

/* Test card registers */
nResult = aceTestRegisters(
 0, /* LDN */
 &sTest); /* Test Results Storage */

if(nResult)
 printf(“aceTestRegisters Error: Code %d\n”, nResult);

/* Display Test results */
if(sTest.wResult == ACE_TEST_PASSED)
{
 printf("Registers Passed test.\n");
}
else
{
 printf("Register Failed test, expected=%04x
 read=%04x!!!\n",sTest.wExpData, sTest.wActData);
}

Code Example 115. Running a Hardware Register Test

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

211

3.3.10 Testing Hardware Memory

The AceXtreme C SDK supplies a test to verify that the DDC hardware memory can
be accessed and read back correctly. The user has the ability to supply a 16-bit verify
pattern. This test can be executed via the aceTestMemory() function.

S16BIT nResult;
TESTRESULT sTest;

/* Test card memory */
nResult = aceTestMemory(
 0, /* LDN */
 &sTest, /* Test Results Storage */
 0xAA55); /* Pattern to Test */

if(nResult)
 printf(“aceTestMemory Error: Code %d\n”, nResult);

/* Display Test results */
if(sTest.wResult == ACE_TEST_PASSED)
{
 printf("Ram Passed %04x test.\n",0xAA55);
}
else
{
 printf("Ram Failed %04x test, data read = %04x addr =
 %d!!!\n", 0xAA55, sTest.wActData, sTest.wAceAddr);
}

Code Example 116. Running a Hardware Memory Test

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

212

3.3.10.1 Testing 1553 Protocol

The AceXtreme C SDK supplies a test to verify that the DDC hardware can properly
transmit and receive 1553B protocol. The device is placed into internal loopback and
1553 traffic is sent, received and verified. This test can be executed via the
aceTestProtocol() function.

S16BIT nResult;
TESTRESULT sTest;

/* Test card protocol */
nResult = aceTestProtocol(
 0, /* LDN */
 &sTest); /* Test Results Storage */

if(nResult)
 printf(“aceTestProtocol Error: Code %d\n”, nResult);

/* Display Test results */
if(sTest.wResult == ACE_TEST_PASSED)
{
 printf("Protocol Unit Passed test.\n");
}
else
{
 printf("Protocol Unit Failed test, expected=%04x read=%04x
 addr=%04x!!!\n", sTest.wExpData, sTest.wActData,
 sTest.wAceAddr);
}

Code Example 117. Running a 1553 Protocol Test

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

213

3.3.10.2 Testing Hardware Interrupts

The AceXtreme C SDK supplies a test to verify that the DDC hardware interrupt can
be properly generated and accessed by the SDK. This test can be executed via the
aceTestIrqs() function.

S16BIT nResult;
TESTRESULT sTest;

/* Test card Interrupts */
nResult = aceTestIrqs(
 0, /* LDN */
 &sTest); /* Test Results Storage */

 if(nResult) printf(“aceTestIrqs Error: Code %d\n”, nResult);

/* Display Test results */
if(sTest->wResult == ACE_TEST_PASSED)
{
 printf("Interrupt Occurred, Passed test.\n");
}
else
{
 printf("Interrupt Test Failure, %s %s!!!\n",
 (sTest.wCount&1)?"NO TimeTag Rollover":"",
 (sTest.wCount&2)?"NO IRQ":"");
}

Code Example 118. Running a Hardware Interrupt Test

http://www.ddc-web.com/

U S I N G T H E A C E X T R E M E C S D K

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

214

3.3.10.3 Running Hardware Vectors

The AceXtreme C SDK supplies the ability to run DDC Vector Tests. These tests
(encapsulated in a file having a “VEC” extension) are used to run more detailed and
extensive testing. DDC supplies a standard Vector File (test.vec) for this purpose.
Vector files can be executed via aceTestVectors() function.

S16BIT nResult;
TESTRESULT sTest;

/* Run Hardware Vectors */
nResult = aceTestVectors(
 0, /* LDN */
 &sTest, /* Test Results Storage */
 "test.vec"); /* Vector File to Use */

if(nResult)
 printf(“aceTestVectors Error: Code %d\n”, nResult);

/* Display Test results */
if(sTest.wResult == ACE_TEST_PASSED)
{
 printf("Vectors Passed, EOF at line #%d.\n",sTest.wCount);
}
else
{
 printf("Vectors Failed!\n");
 printf("Failure...at line #%d\n",sTest.wCount);
 printf(" location=%s\n",
(sTest.wResult==ACE_TEST_FAILED_MVECTOR)?"memory":"register");
 printf(" address=%04x\n",sTest.wAceAddr);
 printf(" expected=%04x\n",sTest.wExpData);
 printf(" actual=%04x\n",sTest.wActData);
}

Code Example 119. Running Hardware Vectors

http://www.ddc-web.com/

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

215

4 INCLUDED DEMOS
This software package is supplied with many examples of the use of the SDK and the
capabilities of the hardware. The examples provided demonstrate the six main
categories for use of the SDK. The six categories are BC mode, RT mode, MT mode,
RTMT mode, MT-I mode, and RTMT-I mode.

In all cases, the examples have been provided as source codes with an appropriate
Make file that may be used to build the executable.

The Demo programs are split into three groups:

• General – These programs will operate on all DDC 1553 Hardware

• AceXtreme – These programs will operate on AceXtreme family DDC 1553
hardware for both Single-Function and Multi-Function

• AceXtreme MF – These programs will only operate on AceXtreme Multi-
Function 1553 Hardware.

4.1 General Demo Programs

4.1.1 AIO.c

This application demonstrates the use of the avionic discrete ports found on supported
DDC cards. It runs four tests on each of the avionic discrete channels.

The first test verifies that each avionic discrete direction can be set internally as an
input or output. The second will check the input level of each channel, as it is
expected to default to high. The third test will check the output level of each channel,
which is expected to be low by default. Finally this application will set the direction of
communication, and set the level for each output channel. The connected input
channel will then be read to test the communication. If the input level is not read as
the output level, an error will be displayed.

This demo works without an external loopback connection, as these devices are
equipped with internal sensing circuitry specifically to perform these tests. They
internally connect the first half of the I/O channels directly to the second half of the I/O
channels.

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

216

4.1.2 BcAsync.c

This sample demonstrates the ability of sending out three asynchronous messages in
the low priority mode. This means that messages will be inserted at the end of a
minor frame. The user sets the logic device used for the BC and chooses how they
want to send the asynchronous messages. The user will see a few lines of BC to RT
messages and then a series of asynchronous messages.

4.1.3 BCAsync2.c

This sample demonstrates the ability of sending out three asynchronous messages in
the high priority mode. The user will see three different asynchronous messages
transmitted on the bus.

4.1.4 BCDemo.c

This demonstration program creates a basic BC to RT message that uses a single
data block of 32 words. Two opcodes are then created. One opcode is the XEQ
(execute) opcode that will cause the BC message to be transmitted over the bus. The
second opcode is created as a jump to minor frame by using the CAL (call) instruction.

The opcode 1 is then placed in a minor frame and opcode 2 is entered in the major
frame. The major frame is run and will call the minor frame that contains the XEQ
opcode. The XEQ opcode is tied to a message through the aceBCOpCodeCreate()
function. One of the input parameters is the ID of the message that was previously
created with the aceBCMsgCreateBCtoRT() function.

When the major frame is run, it will run the major frame forever and will never halt.
The frame will run forever because it was specified to do so in the aceBCStart()
function.

4.1.5 BCDBuf.c

This demonstration program creates three messages that are included into one minor
frame. The three messages are BC to RT, RT to BC, and RT to RT. A fourth opcode is
created that will call minor frame 1. Message 1, 2, and 3 are attached to minor frame
1. The major frame will call minor frame 1 using opcode 4 and then run message 2 by
attaching opcode 2.

When the major frame is run, it will run the major frame forever and will never halt.
The frame will run forever because it was specified to do so in the aceBCStart()
function.

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

217

If a ‘0’ is pressed, then the keystroke routine will quit. The program will enter a data
display mode until any key is pressed. Finally, the BC will halt, and all allocated
memory will be freed.

This sample also utilizes the function aceBCBreateImageFiles() that would allow for
a user to create an image file for their code.

4.1.6 RTDBuf.c

This program creates an RT stack file in ASCII text using all messages read from the
hardware.

A user buffer is created and initialized. The RT address is set to 5 and the buffer is
attached to a double-buffered data block. This data block is then attached to
Subaddress 1 for transmit command and to Subaddress 2 for receive commands that
the RT receives.

After these steps, the RT is set to the run state and the program enters a loop looking
for keystrokes. If a ‘0’ is input, the program halts, if any other number (1 through 9) is
input, the number will be placed in the RT buffer for transmission.

4.1.7 RTMode.c

This demo program initializes the device to operate as an RT using the Logical Device
number that is input in the command line parameters. It then sets the RT address to
the value input by the user. After setting the address, the program attaches a double-
buffered data block to Subaddress 1.

The software will read the synchronize MODE code data by using the
aceRTModeCodeReadData() function in a loop. The loop will exit and the device will
close if the ENTER key is pressed.

4.1.8 RTMTDemo.c

This program demonstrates the minimum setup needed to run the device
simultaneously as an RT and a Monitor. The program initializes the device and sets
the RT/MT address to the address specified by the user. The user sets the RT
address, as well as the RT subaddress. It starts the Remote Terminal / Monitor and
then stops both. This program gets messages from the RT hardware stack and the
MT hardware stack. In RT/MT mode of operation, the monitor will monitor the entire
1553 data bus except for its own RT address. The MT stack on the hardware will
contain all contents of the data bus except anything received or sent by the device’s
assigned RT address. This is a function of the device and cannot be changed. When
using the AceXtreme C SDK, some post processing is performed to combine the MT

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

218

stack and the RT stack into this one RT/MT host buffer, which will contain all
monitored messages and data on the 1553 data bus.

If using this SDK in RT/MT mode without a host buffer installed, the MT stack will
contain all monitored data on the 1553 data bus, except for the RT defined for that
particular channel.

4.1.9 MTPoll.c

This program demonstrates the setup and operation necessary to run the device in
the Monitor mode. Interrupts are not used in this example; instead the software
periodically polls the monitor stack and transfers the message data received to a user
buffer. This program initializes the hardware to the monitor mode.

The user may choose to set up an RT filter and then choose which RT to filter, which
subaddres to filter, and which data type to filter. The monitored data is displayed on
the terminal. If any key is pressed, the program will remove any dynamically allocated
buffers and quit.

4.1.10 MTIrq.c

This program demonstrates the setup and operation of the device as a Monitor
operating with interrupts. The program will monitor the bus and display the data to the
screen. If a file is specified, the data will be stored to disk.

The device is initialized to Monitor Mode. After initialization, the storage file will open if
it is defined in the parameter list. The MT stack is created based on the memory size
of the card. The software allocates a host buffer based on the size of the Monitor
stack which must be at least three times greater than the number of messages that
can be stored in the command stack * 40 (fixed length messages). The Monitor is then
started and the captured data will be displayed on the terminal and sent to a file based
on the parameter list.

4.1.11 DIO.c

This application demonstrates the use of the digital discrete ports found on supported
DDC cards. It utilizes access of the digital discretes in conjunction with initialization of
MIL-STD-1553 functionality. Moreover, it tests each digital discrete one at a time.

This application will set the direction of communication, and set the level for the output
channel. The input channel will then be read to test the communication. The process
will then be repeated with the channel‘s direction reversed.

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

219

This demo works with a loopback connection; with the first half of the I/O channels
connected directly to the second half of the I/O channels.

4.1.12 DIOALL.c

This application demonstrates the use of the digital discrete ports found on supported
DDC cards. It utilizes access of the digital discretes independent of MIL-STD-1553
functionality. This functionality can be initialized and/or used without the use of MIL-
STD-1553 functionality. Moreover, it tests all of the digital discretes at the same time.

This demo works with a loopback connection; with the first half of the I/O channels
connected directly to the second half of the I/O channels.

This application will set the direction of communication, and set the level for the output
channel. The input channel will then be read to test the communication. The process
will then be repeated with the channel‘s direction reversed.

4.1.13 Irigdemo.c

This sample demonstrates the use of IRIG 106 Chapter 10 Monitor (MTi) mode. The
main function illustrates how to configure resources to receive IRIG 106 Chapter 10
time packets. These packets will be generated based on an internal or external
IRIG106 time source.

4.1.14 Looptest.c

This sample performs a wrap around self-test of the 1553 device channel. Two
different tests are run based on the device under test:

For EMACE devices, the test transmits a word on one channel and receives the
transmitted word on the other channel.

For E²MA and AceXtreme devices, the test connect the Channel A receive lines to the
Channel B receiver and operates the BC with message. This exercises the BC on-line
loopback test as the failure test.

This test require that a loop back cable be used which will connect channel A to
channel B with the appropriate termination. If the expected data is received (EMACE
devices) or the on-line loopback test does not fail (AceXtreme devices), then the test
returns a PASS.

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

220

4.1.15 Mti2disk.c

This sample demonstrates the use of IRIG 106 Chapter 10 Monitor (MTi) mode. It
saves the monitored data packets to a file in raw IRIG106 Chapter 10 format. When
running this sample, the user inputs the device number and configures the device to
monitor a 1553 Bus and saves the packets.

4.1.16 Mti2disk2.c

This sample acts in the same manner as MTi2Disk. This also actively displays the
amount of packets intercepted. The file generated is the same as the MTi2Disk
sample.

4.1.17 Mtidemo.c

This sample demonstrates the use of IRIG 106 Chapter 10 Monitor (MTi) mode. The
main function illustrates how to configure resources to receive IRIG 106 Ch10 data
packets. The user inputs a logical device number for the MTi and a value for Ch10
IRIG ID. This sample does not store any data into a file for later review.

4.1.18 Mtiread.c

This sample reads and converts a saved IRIG106 Chapter 10 binary file into a
readable decoded message. It exports the message to an ASCII text file.

4.1.19 MtiRead2.c

This sample reads and converts a saved IRIG106 Chapter 10 binary file into a
readable decoded message and prints the message to screen as well as exporting the
message to an ASCII text file.

4.1.20 RTirq.c

This sample demonstrates how using a host buffer in RT mode decreases the number
of messages lost, as opposed to polling the stack.

4.1.21 RTMTiDemo.c

This sample demonstrates the RTMTi on one channel. The user sets the logical
device number, the Ch10 channel ID, and an RT address. The sample then returns
the amount of messages at a rate of every 10 seconds.

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

221

4.1.22 RTPoll.c

This sample uses simple polling to read messages off the RT stack. The user
specifies the RT address and the RT subaddress. The RT will then display all the
data send from an external BC in a decoded format.

4.1.23 Tester.c

This application tests all hardware and software components (registers, hardware
memory, protocol, interrupts, and vectors) to make sure the device is in full working
order. Any problems that arise are reported back in descriptive errors. E2MA and
AceXtreme devices do not support the Protocol and Vector test. These tests will
return with a failure error message of “Function not supported”.

4.2 AceXtreme Demo Programs

4.2.1 Aesdemo.c

The Aesdemo demonstrates the use of the AceXtreme MTi monitor in Advanced Error
Sampling (AES) mode. When the MTi channel is placed into AES mode, a bit by bit
sampling of the bus is recorded in the data packets when an error is detected. The
sample shows how to configure AES mode, retrieve packets and store them to a
CH10 file.

4.2.2 Bcmti.c

This sample demonstrates the combination of the IRIG 106 Chapter 10 Monitor (MTi)
and Bus Controller (BC) modes working in concurrently on the same channel. The BC
device will transmit a predefined amount of data and then the MTi will compare the
message count and data to the expected values.

4.2.3 MTIedemo.c

This sample demonstrates the use of IRIG 106 Chapter 10 Monitor (MTi) mode, while
the MTi channel is configured to use the MTi Error monitor. The main function
illustrates how to configure resources to receive IRIG 106 Ch10 data packets. The
user inputs a logical device number for the MTi and a value for Ch10 IRIG ID. This
sample does not store any data into a file for later review.

4.2.4 MRTMTi.c

This sample demonstrates the Multi-RT (MRT) and IRIG 106 Chapter 10 Monitor
(MTi) operating concurrently on one channel. BC mode is run on another channel to
allow for simultaneous monitoring and for purposes of an integrity check at the end.

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

222

This sample will run until the user terminates it. While the sample is running, three
threads will display three different sources of information, one thread retrieves BC
Host Buffer Data, another retrieves the monitored Data Packets in an IRIG 106
chapter 10 format, and the final retrieves MRT Message Data. If the message count
is incorrect, the system will return an error.

4.2.5 RTDataArray.c

This sample demonstrates the use of Static Data Arrays for RT Mode.

4.2.6 DataArray.c

This sample application demonstrates the transmission data arrays in BC Mode.

4.2.7 DataStrm.c
**Note: This sample requires four physical 1553 channels

This sample application demonstrates the transmission of a bulk data transfer. The
program will show all of the necessary API calls to configure buffers, and stream the
data.

4.2.8 Mrtdemo.c

This sample demonstrates the use of the Multi-RT mode with an AceXtreme device.
The sample will configure and run several RTs. The program will ask the user to
specify which RTs the AceXtreme device should emulate.

4.3 AceXtreme MF Samples

4.3.1 BCei .c (AceXtreme MF only)

This sample application demonstrates the use of BC error injection via a menu driven
interface. The user can select between word count, bit count, glitch inverse or gap
errors to inject into a message.

Three BC to RT messages will be created with the selected error injected into
message #2.

The application demonstrates the configuration of the error parameters as well as the
enabling of such within a message for transmission. It will then retrieve the
transmitted messages from either the stack or host buffer as per user selection.

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

223

4.3.2 BCIMR.c (AceXtreme MF only)

This sample application demonstrates the use of BC inter-message routines via a
menu driven interface. Inter-message routines are operations that are performed
between the execution of two messages within a frame. The available inter-message
routines are described in Table 28.

This application uses both BC and multi-RT mode. It will create a frame consisting of
two BC to RT messages and the inter-message routine selected by the user which will
be executed immediately after the first message. The sample also initializes RT1 and
RT2 to demonstrate the interaction between the BC and these remote terminals with
certain inter-message routines.

Upon completion of this sample, a description of the expected results is displayed on
the console. The user can compare this with the actual results displayed during
operation.

4.3.3 BCMemobj .c (AceXtreme MF only)

This application demonstrates the use of BC memory objects to implement conditional
messaging. BC memory objects are created, and manipulated depending on the
user’s choices to control the transmission of messages.

In this example three messages are created, the first of which is always transmitted.
Each time a frame is executed, the two previously created memory words will be
compared. If they are not equal, the second memory word is incremented. If they are
equal, the second and third messages are also transmitted within that frame. Also if
the words are equal, the second memory word is reset back to zero.

The memory words are initialized to 5 and 10; therefore the user will observe the
additional messages transmitted every fifth frame. This is verified successful by the
sample by comparing memory words and the number of messages transmitted. The
results are also displayed on the console.

4.3.4 BCMRT.c (AceXtreme MF only)
** Note – This demo requires an additional channel to act as a bus monitor **

This sample application will demonstrate the use of concurrent bus controller and
multi-RT on a single channel.

It configures the BC to send three BC to RT messages in a synchronous frame until
the user stops it by key press. It also configures three concurrent remote terminals to
receive these three messages.

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

224

During execution of the sample, the number of messages sent by the BC and the
number of messages received by the RTs and Monitor are compared and displayed to
the console to ensure that the messages transmitted are as expected.

4.3.5 BCMRTMTI.c (AceXtreme MF only)

This sample application will demonstrate the use of concurrent bus controller, multi-
RTs and a bus monitor on a single channel.

It configures the BC to send three BC to RT messages in a synchronous frame until
the user stops it by key press. It also configures three concurrent remote terminals to
receive these three messages.

During execution of the sample, the number of messages sent by the BC and the
number of messages received by the RTs and Monitor are compared and displayed to
the console to ensure that the messages transmitted are as expected.

4.3.6 BCOpcode.c (AceXtreme MF only)
** Note – This demo requires an additional channel to act as a bus monitor **

The sample application demonstrates the capability of opcode modification for
changing messages or frames during runtime. The steps to run a frame, not run a
frame, modify a message, and modify a frame are demonstrated in this application.
The device is initialized in concurrent BC and MRT modes.

Seven messages are created of which the first three are inserted into minor frame #1,
and the second three are inserted into minor frame #2. The seventh message is left
unassigned for use later. A major frame is initially created containing minor frame #1.
During the execution of this program, the major frame is modified to use minor frame
#1 by opcode modification. Also during the execution, message #7 is used to replace
other messages originally inserted into each minor frame. The capability to start and
stop running a specific frame by modification of opcodes is also demonstrated in this
sample.

At the conclusion of this program, verification is performed by comparison of the
number of BC messages transmitted to messages received by the bus monitor.

4.3.7 BCTime.c (AceXtreme MF only)

This example shows a user how to take advantage of different BC message timing
functions. It demonstrates how to configure messages using “Inter-Message Gap
Time” versus “Time to Next Message” parameters.

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

225

It configures the BC to send three BC to RT messages in a synchronous frame until
the user stops it by key press. It also configures three concurrent remote terminals to
receive these three messages. However, the user is given the choice via menu to
select the timing mechanism as either Time to Next Message or Inter-Message Gap
Time. The user must select whether the resolution is 1 microsecond or 100
microseconds. The bus controller frames are then configured according to the user’s
selection.

4.3.8 DBCDEMO.c (AceXtreme MF only)

** Note this sample requires two physical channels **

This application is an example of the method used to initiate the transfer of bus control
from a bus controller to a remote terminal.

The program will configure two separate channels in concurrent BC/multi-RT mode. It
will alternate between transferring control from the BC of the first channel to an RT on
the second, and vice versa.

4.3.9 MRTEI.c (AceXtreme MF only)

This sample application demonstrates the use of RT error injection via a menu driven
interface. The user can select between word count, bit count, glitch inverse or gap
errors to inject into a message.

The application demonstrates the configuration of the error parameters as well as the
enabling of such within a message for transmission. It will then retrieve the
transmitted messages from the host buffer and display to the console.

4.3.10 MTRDemo.c (AceXtreme MF only)

This sample application acts as an “out of the box” bus recorder. It demonstrates the
functionality required to monitor the 1553 bus and record all traffic including errors to a
file. This file can be replayed back to the bus at a later time as demonstrated by the
replaydemo sample application.

4.3.11 ReplayDemo.c (AceXtreme MF only)

This sample application demonstrates use of the replay engine in BC mode to
playback previously recorded 1553 traffic on the bus. This demo can replay a file
created by the above described mtrdemo sample application.

http://www.ddc-web.com/

I N D E X

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

226

4.3.12 Resptime.c (AceXtreme MF only)

This sample application demonstrates the capability of configuring both the RT
response timeout, and the RT response for a given RT. It is a very simplistic example
of setting up multi-RT mode and configuring the timing parameters via API calls.

4.3.13 Trigdio.c (AceXtreme MF only)
** Note this sample requires the following DIO connections be wired:

 DIO1 -> DIO5
 DIO2 -> DIO6
 DIO3 -> DIO7
 DIO4 -> DIO8

This sample application loops through setting the level of each the discrete I/O to high
which will trigger an interrupt event associated with the DIO it is connected to, as per
the description above.

For example DIO#1 is set to high, thus triggering an interrupt event configured to
DIO#5.

4.3.14 Trigger.c (AceXtreme MF only)

This sample application will demonstrate the API calls necessary to configure, and
utilize the available triggers and events on the AceXtreme device. It will loop through
all of the possible triggers, and for each one trigger all of the possible events
associated with each. Please refer to section 3.2.7 for a description of the available
triggers and events.

4.3.15 Voltage.c (AceXtreme MF only)

This example application configures a simple bus controller that transmits one frame
containing one message twenty times. The program allows the user to enter a
desired voltage at which to transmit the messages.

This demonstrates the API’s necessary to get the current voltage, as well as setting
the voltage to a desired value.

http://www.ddc-web.com/

Data Device Corporation BU-69092SX Software User’s Manual
www.ddc-web.com Rev M-12/15

227

EMACE PLUS SDK MANUAL RECORD OF CHANGE

Revision Date Pages Description

A 10/2007 All Initial Release
B 12/2007 All Replacement of aceDioCtl, aceDioDir, and aceDioBits. Edits to table

48.
C 12/2007 121, 571, Added note and changed function name
D 2/2008 428 Edited ACE_OPCODE_FLG
E 3/2008 All Added new functions throughout document
F 6/2008 All Added new function in general function section
G 9/2008 49, 52, 183,

702
Warning added for global time-tag on pgs. 42 and 183. changed web
link to irig106.org on pg. 49, Changed the return values on pg. 702.

H 11/2008 41, 14, 693,
427, 356

Removed line from code example on page 41. Fixed minor error on
page 14. Added dwOptions to page 693. Changed dwDualType to
dwMsgOptions on page 356. Removed
ACE_MSGOPT_DOUBLE_BUFFER once on page 427

http://www.ddc-web.com/

Data Device Corporation
Leadership Built on Over 50 Years of Innovation

Data Device Corporation (DDC) is the world leader in the design and manufacture of high-reliability data bus
products, motion control, and solid-state power controllers for aerospace, defense, and industrial automation
applications. For more than 50 years, DDC has continuously advanced the state of high-reliability data
communications and control technology for MIL-STD-1553, ARINC 429, AFDX®, Synchro/Resolver interface, and
Solid-State Power Controllers with innovations that have minimized component size and weight while increasing
performance. DDC offers a broad product line consisting of advanced data bus technology for Fibre Channel
networks; MIL-STD-1553 and ARINC 429 Data Networking cards, components, and software; Synchro/Resolver
interface components; and Solid-State Power Controllers and Motor Drives.

DDC is a leader in the development, design, and manufacture of highly reliable and innovative military data bus
solutions. DDC's Data Networking Solutions include MIL-STD-1553, ARINC 429, AFDX®, Ethernet and Fibre
Channel. Each Interface is supported by a complete line of quality MIL-STD-1553 and ARINC 429 commercial,
military, and COTS grade cards and components, as well as software that maintain compatibility between product
generations. The Data Bus product line has been field proven for the military, commercial and aerospace markets.

DDC is also a global leader in Synchro/Resolver Solutions. We offer a broad line of Synchro/Resolver instrument-
grade cards, including angle position indicators and simulators. Our Synchro/Resolver-to-Digital and Digital-to-
Synchro/Resolver microelectronic components are the smallest, most accurate converters, and also serve as the
building block for our card-level products. All of our Synchro/Resolver line is supported by software, designed to
meet today's COTS/MOTS needs. The Synchro/Resolver line has been field proven for military and industrial
applications, including radar, IR, and navigation systems, fire control, flight instrumentation/simulators, motor/
motion feedback controls and drivers, and robotic systems.

As the world’s largest supplier of Solid-State Power Controllers (SSPCs) and Remote Power Controllers (RPCs),
DDC was the first to offer commercial and fully-qualified MIL-PRF-38534 and Class K Space-level screening for
these products. DDC’s complete line of SSPC and RPC boards and components support real-time digital status
reporting and computer control, and are equipped with instant trip, and true I²T wire protection. The SSPC and
RPC product line has been field proven for military markets, and are used in the Bradley fighting vehicles and
M1A2 tank.

DDC is the premier manufacturer of hybrid motor drives and controllers for brush, 3-phase brushless, and
induction motors operating from 28 Vdc to 270 Vdc requiring up to 18 kilowatts of power. Applications range from
aircraft actuators for primary and secondary flight controls, jet or rocket engine thrust vector control, missile flight
controls, to pumps, fans, solar arrays and momentum wheel control for space and satellite systems.

Product Families

Military | Commercial Aerospace | Space | Industrial

Data Bus | Synchro/Resolver Digital Conversion| Power Controllers | Motor Controllers

Certifications

Data Device Corporation is ISO 9001: 2008 and AS 9100, Rev. C certified.

DDC has also been granted certification by the Defense Supply Center Columbus (DSCC) for manufacturing
Class D, G, H, and K hybrid products in accordance with MIL-PRF-38534, as well as ESA and NASA approved.

Industry documents used to support DDC's certifications and Quality system are: AS9001 OEM Certification,
MIL-STD-883, ANSI/NCSL Z540-1, IPC-A-610, MIL-STD-202, JESD-22, and J-STD-020.

The information in this Manual is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are
granted by implication or otherwise in connection therewith. Specifications are subject to change without notice.

Outside the U.S. - Call 1-631-567-5700

United Kingdom: DDC U.K., LTD
James House, 27-35 London Road, Newbury,
Berkshire RG14 1JL, England
Tel: +44 1635 811140 Fax: +44 1635 32264

France: DDC Electronique
84-88 Bd de la Mission Marchland
92411 Courbevoie Cedex, France
Tel: +33-1-41-16-3424 Fax: +33-1-41-16-3425

Germany: DDC Elektronik GmbH
Triebstrasse 3, D-80993 München, Germany
Tel: +49 (0) 89-15 00 12-11
Fax: +49 (0) 89-15 00 12-22

Japan: DDC Electronics K.K.
Dai-ichi Magami Bldg, 8F, 1-5, Koraku 1-chome,
Bunkyo-ku, Tokyo 112-0004, Japan
Tel: 81-3-3814-7688 Fax: 81-3-3814-7689
Web site: www.ddcjapan.co.jp

Asia: Data Device Corporation - RO Registered in Singapore
Blk-327 Hougang Ave 5 #05-164
Singapore 530327
Tel: +65 6489 4801

Inside the U.S. - Call Toll-Free 1-800-DDC-5757

Headquarters and Main Plant
105 Wilbur Place, Bohemia, NY 11716-2426
Tel: (631) 567-5600 Fax: (631) 567-7358
Toll-Free, Customer Service: 1-800-DDC-5757

Web site: www.ddc-web.com

DATA DEVICE CORPORATION
REGISTERED TO:

ISO 9001:2008, AS9100C:2009-01
EN9100:2009, JIS Q9100:2009

FILE NO. 10001296 ASH09

R
E

G
IS T E R E D F

IR
M

®
U

The first choice for more than 50 years—DDC
DDC is the world leader in the design and manufacture of high reliability
data interface products, motion control, and solid-state power controllers
for aerospace, defense, and industrial automation.

Data Device Corporation

	Cover

	Record of Change

	Table of Contents

	List of Figures

	List of Tables

	List of Code Examples

	1 PREFACE
	1.1 Text Usage
	1.2 Special Handling and Cautions
	1.3 Trademarks
	1.4 Technical Support

	2 Overview
	2.1 Description
	2.2 Features
	2.3 System Requirements
	2.4 DDC MIL-STD-1553 Device Families
	2.5 AceXtreme SDK Directory Structure for Windows
	2.5.1 AceLibrarySupport
	2.5.2 Documentation
	2.5.3 Drivers
	2.5.4 Firmware
	2.5.5 Include Directory
	2.5.6 Lib Directory
	2.5.7 Samples
	2.5.8 TesterSimulatorLibrarySupport
	2.5.9 Utilities

	2.6 AceXtreme SDK Directory Structure for Linux
	2.6.1 ddccm
	2.6.2 docs
	2.6.3 drivers
	2.6.1 Firmware
	2.6.2 libraries
	2.6.2.1 AceXtreme Library (emacepl)
	2.6.2.2 Ace Library (acetoemace)
	2.6.2.3 Remote Access (ethernet_socket)
	2.6.2.4 Tester Simulator Library (tstsim)

	2.6.3 samples
	2.6.4 tools

	2.7 AceXtreme SDK Directory Structure for VxWorks
	2.7.1 bsp
	2.7.2 ddccm
	2.7.3 docs
	2.7.4 drivers
	2.7.5 Firmware
	2.7.6 libraries
	2.7.6.1 AceXtreme Library (emacepl)
	2.7.6.2 Remote Access (ethernet_socket)

	2.7.7 samples
	2.7.8 tools

	3 Using the AceXtreme C SDK
	3.1 Initialization and Setup
	3.1.1 Logical Device Numbers
	3.1.2 Assigning Logical Device Numbers
	3.1.2.1 Windows
	3.1.2.2 Linux
	3.1.2.3 VxWorks

	3.1.3 Initializing a MIL-STD-1553 Channel

	3.2 General Concepts
	3.2.1 Object Unique Identifiers (OUID)
	3.2.2 Hardware Time Tags
	3.2.3 Configuring Hardware Interrupts and Callback Routines
	3.2.4 Interrupt Status Queues
	3.2.5 Discrete Digital I/O
	3.2.5.1 Configuring Discrete Digital
	3.2.5.2 Checking Digital I/O line Direction
	3.2.5.3 Setting Digital I/O Output
	3.2.5.4 Reading Digital I/O Input
	3.2.5.5 Digital I/O “All” functions
	3.2.5.6 DIO Time Tag Recording.

	3.2.6 Avionics I/O
	3.2.6.1 Configuring Avionics Discrete I/O
	3.2.6.2 Checking Avionic I/O line Direction
	3.2.6.3 Setting Digital I/O Output
	3.2.6.4 Reading Digital IO Input
	3.2.6.5 Digital I/O “All” functions

	3.2.7 Triggers
	3.2.7.1 Trigger Setup
	3.2.7.2 Event Setup
	3.2.7.1 External Hardware Interactions
	3.2.7.2 Host Interactions

	3.3 1553 Modes of Operation
	3.3.1 Bus Controller (ACE_MODE_BC)
	3.3.1.1 Configuration
	3.3.1.2 Creating BC Objects
	3.3.1.2.1 BC Data Blocks
	3.3.1.2.2 BC Message Blocks
	3.3.1.2.2.1 BC Message Timing
	3.3.1.2.2.1.1 BC Time to Next Message
	3.3.1.2.2.1.2 BC inter-message gap time.

	3.3.1.2.2.2 Synchronous Messages
	3.3.1.2.2.2.1 Synchronous Message Options

	3.3.1.2.2.3 Asynchronous Messages
	3.3.1.2.2.3.1 Asynchronous Messages Options

	3.3.1.3 Building a Frame
	3.3.1.3.1 Understanding Minor and Major Frames
	3.3.1.3.2 BC Opcodes
	3.3.1.3.2.1 Conditional Execution
	3.3.1.3.2.2 Message Execution Opcode
	3.3.1.3.2.3 Creating a Minor Frame
	3.3.1.3.2.3.1 32-Bit Expand BC Frame Time Support
	3.3.1.3.2.3.2 User-Defined Interrupt Opcode

	3.3.1.3.2.4 General Purpose Queue and Flags
	3.3.1.3.2.4.1 General Purpose Queue (GPQ)

	3.3.1.3.2.5 General Purpose Flags (GPF)
	3.3.1.3.2.5.1 General Purpose Flags (GPF) and Conditional Execution

	3.3.1.3.2.6 Creating a Major Frame
	3.3.1.3.2.6.1 Frame Subroutine Call Opcode

	3.3.1.3.3 BC Framing/Sequencing Summary

	3.3.1.4 Activating the BC
	3.3.1.4.1 Starting and Stopping
	3.3.1.4.2 Sending Asynchronous Messages
	3.3.1.4.2.1 Sending High-Priority (HP) Asynchronous Messages
	3.3.1.4.2.2 Sending Low-Priority Asynchronous Messages

	3.3.1.5 Consuming Data
	3.3.1.5.1 Data via Host Buffer
	3.3.1.5.1.1 Installing the Host Buffer
	3.3.1.5.1.2 Reading the Host Buffer
	3.3.1.5.1.2.1 RAW FORMAT
	3.3.1.5.1.2.2 DECODED FORMAT

	3.3.1.5.2 BC Block Status Word
	3.3.1.5.3 Data via Direct Message
	3.3.1.5.3.1 Reading a Message Block
	3.3.1.5.3.1.1 RAW FORMAT
	3.3.1.5.3.1.2 DECODED FORMAT

	3.3.1.5.4 Data via Direct Data Blocks (Read/Write)

	3.3.1.6 Interrupt Events
	3.3.1.7 Dynamic Bus Controller
	3.3.1.7.1 Enabling /Disable Dynamic Bus Controller
	3.3.1.7.2 Inactive BC
	3.3.1.7.3 Inactive RT

	3.3.1.8 1553 Traffic Replay
	3.3.1.8.1 Replay Configuration
	3.3.1.8.2 Start/Stop Replay
	3.3.1.8.3 Pause / Continue Replay
	3.3.1.8.4 Replay Activity Status

	3.3.1.9 BC Intermessage Routines
	3.3.1.9.1 BC Intermessage Routine Types
	3.3.1.9.2 Usage
	3.3.1.9.3 IMR and Triggers

	3.3.2 IRIG-106 Chapter 10 Monitor (ACE_MODE_MTI)
	3.3.2.1 What is IRIG-106 Chapter 10?
	3.3.2.2 Theory of Operation
	3.3.2.2.1 Packet Header
	3.3.2.2.1.1 PACKET SYNC PATTERN (2 Bytes)
	3.3.2.2.1.2 CHANNEL ID (2 Bytes)
	3.3.2.2.1.3 PACKET LENGTH (4 Bytes)
	3.3.2.2.1.4 DATA LENGTH (4 Bytes)
	3.3.2.2.1.5 HEADER VERSION (1 Byte)
	3.3.2.2.1.6 SEQUENCE NUMBER (1 Byte)
	3.3.2.2.1.7 PACKET FLAGS (1 Byte)
	3.3.2.2.1.8 DATA TYPE (1 Byte)
	3.3.2.2.1.9 RELATIVE TIME COUNTER
	3.3.2.2.1.10 HEADER CHECKSUM (2 Bytes)

	3.3.2.2.2 1553 Data Packet Body
	3.3.2.2.2.1 1553 Data Channel Specific Data
	3.3.2.2.2.2 1553 Data Intra-Packet Time Stamp (8 Bytes)
	3.3.2.2.2.3 1553 Data Intra-Packet Data Header
	3.3.2.2.2.4 1553 Message Data Section

	3.3.2.2.3 Packet Trailer
	3.3.2.2.4 Packet Generation Events
	3.3.2.2.4.1 MTI_OVERFLOW_INT
	3.3.2.2.4.2 MTI_HOST_INT
	3.3.2.2.4.3 MTI_TIME_MSG_TRIG_INT
	3.3.2.2.4.4 MTI_TIME_INT
	3.3.2.2.4.5 MTI_NUM_MSGS
	3.3.2.2.4.6 MTI_NUM_WORDS

	3.3.2.3 Configuration
	3.3.2.4 Message Filtering
	3.3.2.5 Activating the MT-I Monitor
	3.3.2.5.1 Starting and Stopping
	3.3.2.5.2 Continue and Pause

	3.3.2.6 Consuming Data
	3.3.2.6.1 Getting 1553 Data Packets
	3.3.2.6.1.1 Blocking Options
	3.3.2.6.1.2 Using the Host-Initiated IRQ

	3.3.2.6.2 Getting Time Data Packets (TDP)
	3.3.2.6.2.1 TDP Channel Specific Data
	3.3.2.6.2.2 TDP Time Data
	3.3.2.6.2.3 Packet Trailer
	3.3.2.6.2.4 Enabling TDPs
	3.3.2.6.2.5 Consuming Time Data Packets (TDP’s)
	3.3.2.6.2.6 Blocking Options

	3.3.2.7 Chapter 10 File Access
	3.3.2.7.1 File open
	3.3.2.7.2 File Close
	3.3.2.7.3 File Read
	3.3.2.7.4 File Write
	3.3.2.7.5 Offset

	3.3.3 Classic Monitor (ACE_MODE_MT)
	3.3.3.1 Configuration
	3.3.3.2 Message Filtering
	3.3.3.3 Activating the Monitor
	3.3.3.3.1 Starting and Stopping
	3.3.3.3.2 Continue and Pause

	3.3.3.4 Consuming Data
	3.3.3.4.1 Data via Host Buffer
	3.3.3.4.1.1 Installing the Host Buffer
	3.3.3.4.1.2 Reading the Host Buffer
	3.3.3.4.1.2.1 RAW FORMAT
	3.3.3.4.1.2.2 DECODED FORMAT

	3.3.3.4.2 Data via Stack
	3.3.3.4.2.1 Reading the Stack
	3.3.3.4.2.1.1 RAW FORMAT
	3.3.3.4.2.1.2 DECODED FORMAT

	3.3.3.4.3 MT Block Status Word
	3.3.3.4.4 Using Interrupt Events

	3.3.4 Remote Terminal (ACE_MODE_RT)
	3.3.4.1 Configuration
	3.3.4.1.1 Setting the RT Address

	3.3.4.2 RT Lookup Tables
	3.3.4.2.1 Busy Bit Table
	3.3.4.2.2 Status Word Table
	3.3.4.2.3 Built-in-Test (BIT) Word Table

	3.3.4.3 RT Data Blocks
	3.3.4.3.1 RT Data Block Types
	3.3.4.3.1.1 Single-Buffered RT Data Block
	3.3.4.3.1.2 Double-Buffered RT Data Block
	3.3.4.3.1.3 Circular-Buffered RT Data Blocks
	3.3.4.3.1.4 Global Circular-Buffered RT Data Block

	3.3.4.3.2 Creating an RT Data Block
	3.3.4.3.3 Mapping an RT Data Block to a RT Subaddress

	3.3.4.4 Subaddress Interrupt Options
	3.3.4.5 Activating the Remote Terminal
	3.3.4.5.1.1 Starting and Stopping

	3.3.4.6 Consuming Data
	3.3.4.6.1 Data via Command Stack
	3.3.4.6.1.1 Reading the Stack
	3.3.4.6.1.1.1 RAW FORMAT
	3.3.4.6.1.1.2 DECODED FORMAT

	3.3.4.6.2 RT Block Status Word
	3.3.4.6.3 Data via RT Data Block
	3.3.4.6.3.1 Reading and Writing Individual RT Data Blocks
	3.3.4.6.3.1.1 Single-Buffered and Double-Buffered RT Data Blocks
	3.3.4.6.3.1.2 Circular-Buffered RT Data Blocks

	3.3.4.6.4 Data via Host Buffer
	3.3.4.6.4.1 Installing the Host Buffer
	3.3.4.6.4.2 Reading the Host Buffer
	3.3.4.6.4.2.1 RAW FORMAT
	3.3.4.6.4.2.2 DECODED FORMAT

	3.3.4.6.5 Mode Code Support
	3.3.4.6.5.1 Reading and Writing Mode Code Data
	3.3.4.6.5.2 Mode Code Events

	3.3.4.7 Command Legalization
	3.3.4.8 Using Interrupt Events

	3.3.5 Multi-RT (ACE_MODE_MRT)
	3.3.5.1 Configuration
	3.3.5.2 Multi-RT Lookup Tables
	3.3.5.2.1 Busy Bit Table
	3.3.5.2.2 Status Word Table
	3.3.5.2.3 Built-in-Test (BIT) Word Table

	3.3.5.3 Multi-RT Data Blocks
	3.3.5.3.1 Mapping a Multi-RT Data Block to a RT Subaddress
	3.3.5.3.2 Subaddress Interrupt Options

	3.3.5.4 Activating the Remote Terminals
	3.3.5.4.1 Starting and Stopping

	3.3.5.5 Consuming Data
	3.3.5.5.1 Mode Code Support
	3.3.5.5.2 Reading and Writing Mode Code Data
	3.3.5.5.3 Mode Code Events

	3.3.5.6 Command Legalization
	3.3.5.7 Using Interrupt Events
	3.3.5.8 MRT Response Time
	3.3.5.9 MRT Response Timeout
	3.3.5.10 DBC Acceptance
	3.3.5.11 MRT Intermessage Routines
	3.3.5.11.1 MRT IMR types
	3.3.5.11.2 Usage
	3.3.5.11.3 IMR and Triggers

	3.3.6 Combination Modes
	3.3.6.1 Combined RT and MT-I (ACE_MODE_RTMTI)
	3.3.6.1.1 Configuration
	3.3.6.1.2 Activating the RT and MT-I Monitor
	3.3.6.1.2.1 Starting and Stopping
	3.3.6.1.2.2 MT-I Continue and Pause

	3.3.6.2 Combined RT and MT (ACE_MODE_RTMT)
	3.3.6.2.1 Configuration
	3.3.6.2.2 Activating the RT and Classic Monitor
	3.3.6.2.2.1 Starting and Stopping
	3.3.6.2.2.2 MT Continue and Pause

	3.3.6.3 Combined BC and MT-I (ACE_MODE_BCMTI)
	3.3.6.4 Combined MRT and MT-I (ACE_MODE_MRTMTI)
	3.3.6.5 AceXtreme Multi-Function Modes
	3.3.6.5.1 Combined BC, MRT and MT-I (ACE_MODE_ALL)
	3.3.6.5.2 BC Response timeout

	3.3.7 Error Injection
	3.3.7.1 BC Error Injection
	3.3.7.2 RT Error Injection

	3.3.8 Amplitude
	3.3.9 Self-Test Capabilities (ACE_MODE_TEST)
	3.3.9.1 Testing Hardware Registers

	3.3.10 Testing Hardware Memory
	3.3.10.1 Testing 1553 Protocol
	3.3.10.2 Testing Hardware Interrupts
	3.3.10.3 Running Hardware Vectors

	4 Included Demos
	4.1 General Demo Programs
	4.1.1 AIO.c
	4.1.2 BcAsync.c
	4.1.3 BCAsync2.c
	4.1.4 BCDemo.c
	4.1.5 BCDBuf.c
	4.1.6 RTDBuf.c
	4.1.7 RTMode.c
	4.1.8 RTMTDemo.c
	4.1.9 MTPoll.c
	4.1.10 MTIrq.c
	4.1.11 DIO.c
	4.1.12 DIOALL.c
	4.1.13 Irigdemo.c
	4.1.14 Looptest.c
	4.1.15 Mti2disk.c
	4.1.16 Mti2disk2.c
	4.1.17 Mtidemo.c
	4.1.18 Mtiread.c
	4.1.19 MtiRead2.c
	4.1.20 RTirq.c
	4.1.21 RTMTiDemo.c
	4.1.22 RTPoll.c
	4.1.23 Tester.c

	4.2 AceXtreme Demo Programs
	4.2.1 Aesdemo.c
	4.2.2 Bcmti.c
	4.2.3 MTIedemo.c
	4.2.4 MRTMTi.c
	4.2.5 RTDataArray.c
	4.2.6 DataArray.c
	4.2.7 DataStrm.c
	4.2.8 Mrtdemo.c

	4.3 AceXtreme MF Samples
	4.3.1 BCei .c (AceXtreme MF only)
	4.3.2 BCIMR.c (AceXtreme MF only)
	4.3.3 BCMemobj .c (AceXtreme MF only)
	4.3.4 BCMRT.c (AceXtreme MF only)
	4.3.5 BCMRTMTI.c (AceXtreme MF only)
	4.3.6 BCOpcode.c (AceXtreme MF only)
	4.3.7 BCTime.c (AceXtreme MF only)
	4.3.8 DBCDEMO.c (AceXtreme MF only)
	4.3.9 MRTEI.c (AceXtreme MF only)
	4.3.10 MTRDemo.c (AceXtreme MF only)
	4.3.11 ReplayDemo.c (AceXtreme MF only)
	4.3.12 Resptime.c (AceXtreme MF only)
	4.3.13 Trigdio.c (AceXtreme MF only)
	4.3.14 Trigger.c (AceXtreme MF only)
	4.3.15 Voltage.c (AceXtreme MF only)

	EMACE PLUS SDK MANUAL RECORD OF CHANGE
	Contact Information

	Sales Support

	Social Media

	Technical Support

