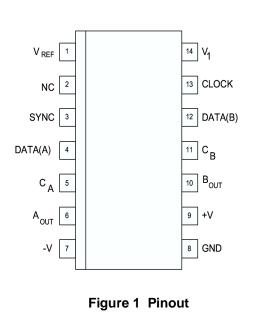
Device Engineering Incorporated

385 East Alamo Drive Chandler, AZ 85225 Phone: (480) 303-0822 (480) 303-0824 Fax: E-mail: admin@deiaz.com

Features

- ARINC 429 Line Driver for high speed (100 KHz) and • low speed (12.5 KHz) data rates.
- Adjustable Slew rates via external capacitors. •
- Small foot print (14L SOIC NB) •
- Programmable output differential range via V_{RFF} pin.
- Drives full ARINC load of 400 Ω and 30 nF.
- -55 °C to +85 °C operating temperature range. •
- 100% Final testing. •

Functional Description


The ARINC 429 Line Driver Circuit is a bipolar monolithic IC designed to meet the requirements of several general aviation serial data bus standards. These include the differential bipolar RZ types such as ARINC 429, ARINC 571, and ARINC 575.

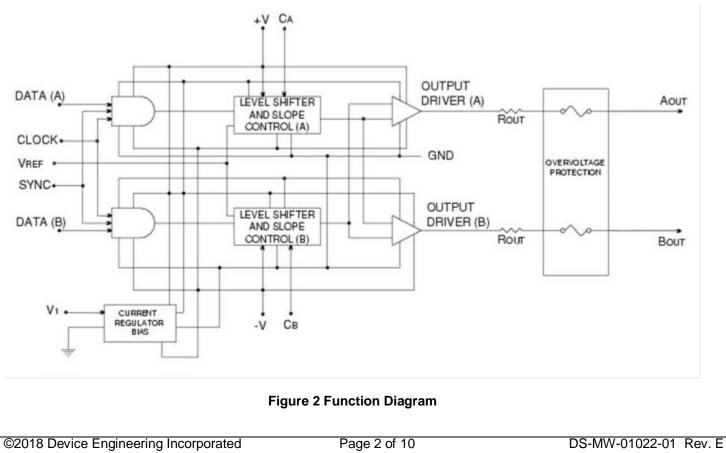
The DEI1022, DEI1023, DEI1024, and DEI1025 are a family of ARINC Line Driver circuits with variations in driver output resistance and output fusing. See the Product Matrix definition table below to find the correct version for your application.

Serial data is presented on DATA(A) and DATA(B) logic inputs in the dual rail format of the DEI1016. The driver is enabled by the SYNC and CLOCK inputs. The output voltage level is programmed by the VREF input and is normally tied to +5VDC along with V_1 to produce output levels of +5 volts, 0 volts, and -5 volts on each output for ±10 volt differential outputs.

The driver output resistance of the DEI1022 and DEI1023 is 75Ω at room temperature; 37.5Ω on each output. The driver output resistance of the DEI1024 and the DEI1025 is zero. The output slew rate is controlled by external timing capacitors on CA and CB. Typical values are 75pF for 100KHz and 500pF for 12.5KHz data.

Table 1: Product Matrix							
Part Number	Output Fusing	Output Resistance (each output)					
DEI 1022	NO	37.5 Ω					
DEI 1023	YES	37.5 Ω					
DEI 1024	NO	0 Ω					
DEI 1025	YES	0 Ω					

DEI1022, DEI1023


DEI1024, DEI1025

ARINC 429 Line Driver

Integrated Circuit

Pin #	Pin Name	Table 2: Pin Descriptions
1	V_{REF}	Analog Input. The voltage on V_{REF} sets the output voltage levels on A_{OUT} and B_{OUT} . The output logic levels swing between + V_{REF} , 0 volts, and - V_{REF} volts.
2	NC	No Connect
3	SYNC	Logic input. Logic 0 forces outputs to NULL state. Logic 1 enables data transmission.
13	CLOCK	Logic input. Logic 0 forces outputs to NULL state. Logic 1 enables data transmission.
4 12	DATA(A) DATA(B)	Logic inputs. These signals contain the Serial Data to be transmitted on the ARINC 429 data bus
5 11	C _A C _B	Analog Nodes. External timing capacitors are tied from these points to ground to establish the output signal slew rate. Typical $C_A = C_B = 75$ pF for 100 kHz data and $C_A = C_B = 500$ pF for 12.5 kHz data.*
6 10	А _{ОUT} В _{ОUT}	Outputs. These are the line driver outputs which are connected to the aircraft serial data bus.
7	-V	Negative Supply Input15VDC nominal.
8	GND	Ground.
9	+V	Positive Supply Input. +15VDC nominal.
14	V ₁	Logic Supply Input. +5VDC nominal.

 $^{*}C_{A}$ and C_{B} pin voltages swing between +/-5 volts. Any electronic switching of the capacitor on the pins must not inhibit the full voltage swings.

Table 3: Truth Table									
	INPU	ITS	OUTPUTS						
SYNC	CLOCK	DATA(A)	Aout	Воит	STATE				
L	Х	Х	Х	0	0	NULL			
X	L	Х	Х	0	0	NULL			
н	н	L	L	0	0	NULL			
н	н	н	н	0	0	NULL			
н	н	Н	L	$+V_{REF}$	-V _{REF}	ONE			
н	н	L	н	$-V_{REF}$	+V _{REF}	ZERO			
NOTE: X =	Don't Care								

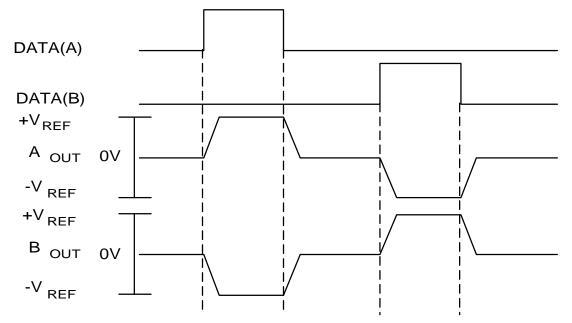


Figure 3 Input / Output Waveforms

Electrical Characteristics

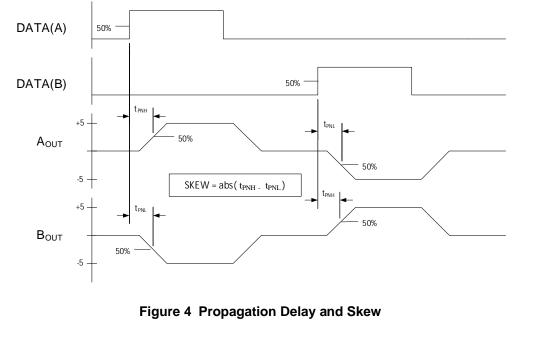
Table 4: Absolute Maximum Ratings							
PARAMETER	SYMBOL	RATING	UNITS				
Voltage between pins +V and –V		40	V				
V1 Maximum Voltage	V1	7	V				
VREF Maximum Voltage	VREF	6	V				
Logic Inputs		(GND-0.3V) to (V1 + 0.3V)	V				
Peak Body Temperature		260	°C				
Storage Temperature	T _{STG}	-65 to +150	°C				
Max Junction Temperature Die Limit (short term operation)	TJ MAX1	+175	°C				
Max Junction Temperature Plastic Package Limit (prolonged operation)	Tj max2	+145	°C				
Output Short Circuit Duration	See Note 1						
Output Over-Voltage Protection	See Note 2						
Power Dissipation	See Table 6						

Notes:

1. One output at a time can be shorted to ground indefinitely. Both outputs can be shorted indefinitely to ground or to each other for $T_A < 45^\circ$ C and Data Duty Cycle < 40%.

2. Both DEI1023 and DEI1025 outputs are fused at between 0.5 Amp DC and 1.0 Amp DC to prevent an over-voltage fault from coupling onto the system power bus. The DEI1022 and DEI1024 outputs are not fused. External fusing must be provided to meet the Transmitter Fault Isolation of the ARINC 429 Specification.

Table 5: Operating Conditions								
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS			
Positive Supply Voltage	+V	+11.4		+16.5	V			
Negative Supply Voltage	-V	-11.4		-16.5	V			
V1	V1	+4.75	+5	+5.25	V			
VREF (For ARINC 429)	Vref	+4.75	+5	+5.25	V			
Operating Temperature	TA	-55		+85	°C			


Table 6: Power Dissipation									
100% Duty Cycle, Full Load = $400\Omega / 30$ nF, Half Load = $4,000\Omega / 10$ nF									
DATA RATE LOAD +V @ 15V -V @ -15V V1, VREF @ Fd Pd LOAD 5V POWER POWER									
0 to 100kbps	NONE	2 mA	5 mA	4 mA	125 mW	0 mW			
12.5kbps	FULL	16 mA	19 mA	4 mA	485 mW	60 mW			
100kbps	FULL	48 mA	51 mA	4 mA	1194 mW *	325 mW			
12.5kbps	HALF	6 mA	8 mA	4 mA	196 mW	30 mW			
100kbps	HALF	22 mA	25 mA	4 mA	561 mW	162 mW			
Note: * May requi	re heat sink @ TA	= +85 °C							

Conditions: Temperature: -55°C to +85°C, +V = +11.4 V to +16.5 V, -V = -11.4 V to -16.5 V, V ₁ = V _{REF} = +5 V ±5%							
SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS	
IQ+V	Quiescent +V supply current	-	2	-	mA	No Load. DATA = CLOCK = SYNC = LOW	
IQ-V	Quiescent -V supply current	-	5	-	mA	No Load. DATA = CLOCK = SYNC = LOW	
IQV ₁	Quiescent V ₁ supply current	-	4	-	mA	No Load. DATA = CLOCK = SYNC = LOW	
IQV _{REF}	Quiescent VREF supply current	-	10	-	uA	No Load. DATA = CLOCK = SYNC = LOW	
VIH	Logic 1 Input V	2.0	-	-	V	No Load.	
VIL	Logic 0 Input V	-	-	0.6	V	No Load.	
I _{IH}	Logic 1 Input I	-	-	10	uA	VIH = 2.0V	
lı∟	Logic 0 Input I	-	-	-20	uA	VIL = 0.6V	
Іонѕс	Output Short Circuit Current (Output High)	-	-	-80	mA	Short to Ground	
IOLSC	Output Short Circuit Current (Output Low)	80	-	-	mA	Short to Ground	
Vон	Output Voltage HIGH. (+1)	VREF - 250mV	VREF	VREF + 250mV	V	No Load.	
V _{NULL}	Output Voltage NULL.	-250	-	+250	mV	No Load.	
Vol	Output Voltage LOW.	-VREF – 250mV	-VREF	-VREF + 250mV	V	No Load. 429 Mode.	
Іст + -	Timing Capacitor Charge Current CA (+1) CB (-1) CA (-1) CB (+1)	-	+200 -200	-	uA uA	No Load. SYNC = CLOCK = HIGH CA and CB held at zero volts.	
ISC (+V)	+V Short Circuit Supply Current	-	-	+150	mA	Output short to ground	
ISC (-V)	-V Short Circuit Supply Current	-	-	-150	mA	Output short to ground	
Rout	Resistance on each output		See Note		Ω	Room Temp Only	
CIN	Input Capacitor	-	-	15	pF	by design	
	DEI1022 and DEI1023, the typical r e on each output is 0 Ω .	esistance or	h each output	is 30 to 45 Ω	. For DEI	1024 and DEI1025, the	

AC Characteristics

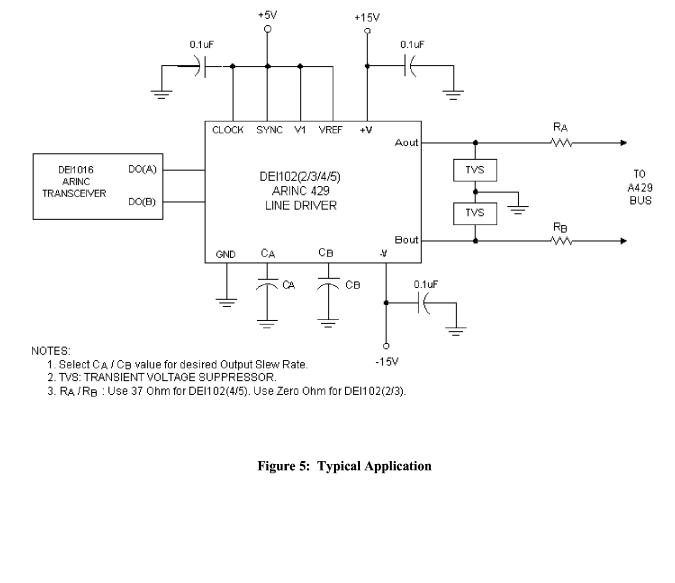
Figure 3 shows the output waveform for the ARINC 429. The output slew rates are controlled by timing capacitors C_A and C_B . They are charged by $\pm 200 \mu A$ (nom.). Slew rate (SR) measured as V/µsec, is calculated by: SR = 200/C, where C is in pF

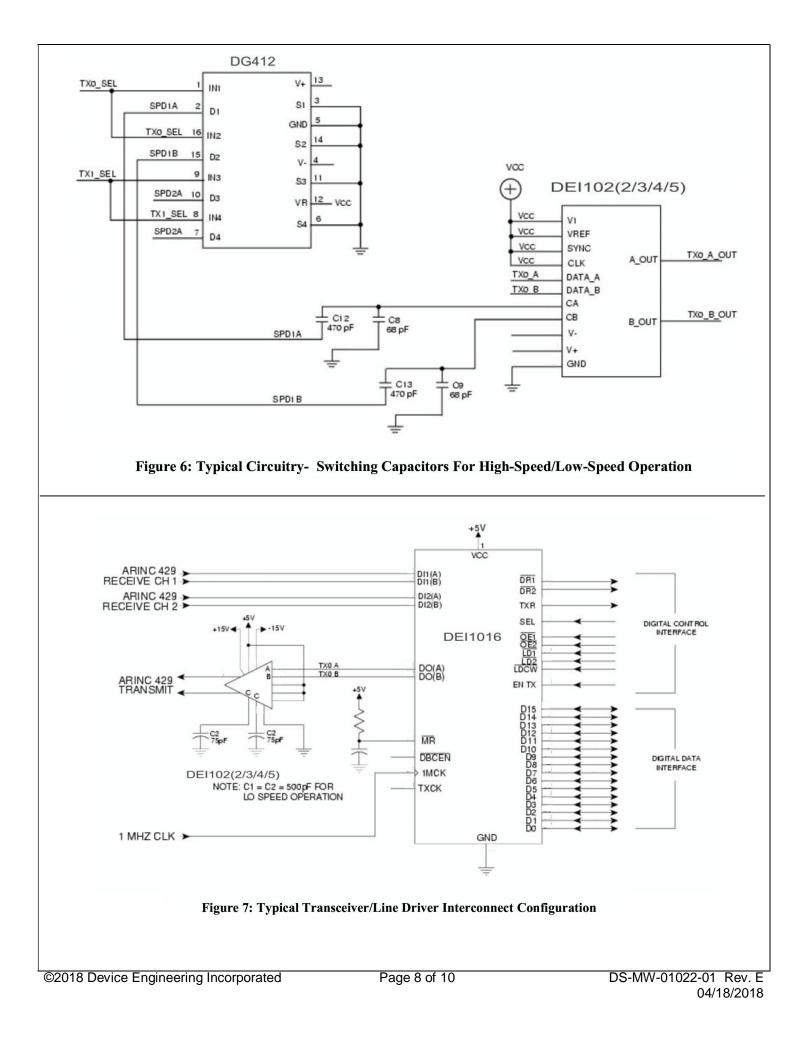
Table 8: AC Electrical Characteristics								
Parameter	Symbol	MIN	MAX	UNITS	NOTES			
Output Rise Time Aout or Bout $C_A = C_B = 75 pF$ $C_A = C_B = 500 pF$	t _R t _R	1.0 5	2.0 15	μsec μsec	5V90%			
Output Fall Time AOUT OF BOUT $C_A = C_B = 75pF$ $C_A = C_B = 500pF$	tr tr	1.0 5	2.0 15	μsec μsec	0V 90% 10%			
Input to Output Propagation Delay	tpnh tpnl	-	3.0	μsec	See Figure 4			
Aout / Bout Skew Spec.	-	-	500	nsec	Calculated as difference of t_{PNH} and t_{PNL}			

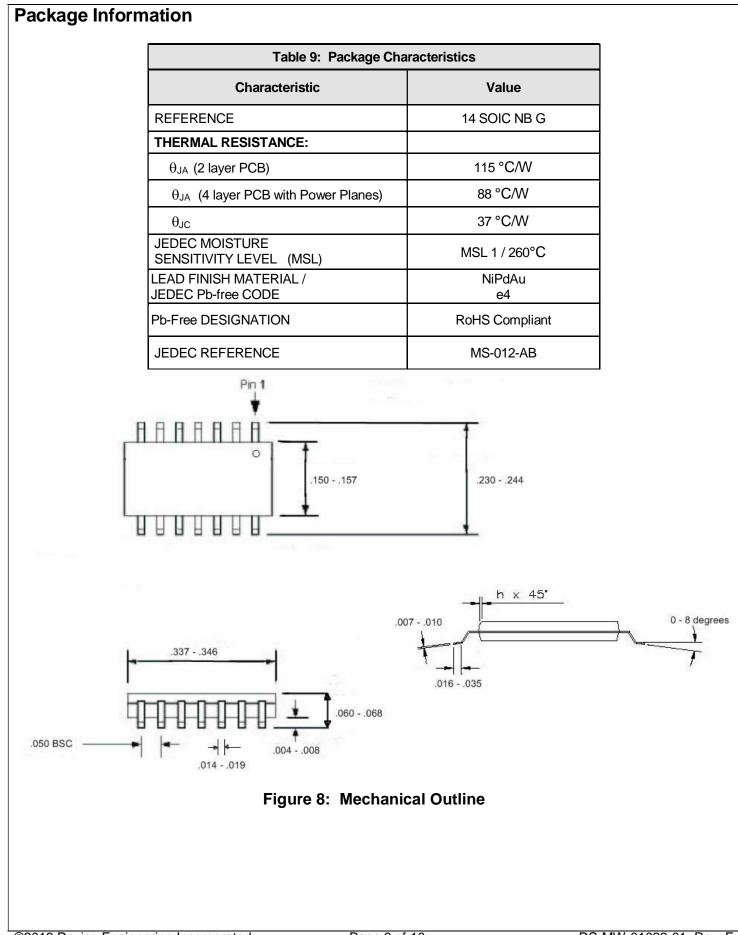
©2018 Device Engineering Incorporated

Thermal Management

Device power dissipation varies greatly as a function of data rate, load capacitance, data duty cycle, and supply voltage. Proper thermal management is important in designs operating at the HI speed data rate (100KBS) with high capacitive loads and high data duty cycles.


Power dissipation may be estimated from Table 6 "Power Dissipation Table". Device power dissipation (Pd) is indicated for 100% data duty cycle with no word gap null times and should be adjusted for the appropriate data duty cycle (DC). Pd(application) = DC * [Pd(table) - 145mW] + 145mW, where DC is the application data duty cycle, Pd(table) is the Pd from the table for the indicated data rate and bus load, and 145mW is the quiescent power. The application's data duty cycle (DC) for 100KBS operation is calculated as:


DC = total bits transmitted in 10 sec period / 1,000,000


= 32 x total ARINC words transmitted in 10 sec period / 1,000,000

Heat transfer from the IC package should be maximized. Use maximum trace width on all power and signal connections at the IC. Place vias on the signal/power traces close to the IC to maximize heat flow to the internal power planes. If possible, design a solid heat spreader land under and beyond the IC to maximize heat flow from the device.

Applications

Table 10: Screening Process					
SCREENING METHODS					
ELECTRICAL TEST:					
ROOM TEMPERATURE	100%				
HIGH TEMPERATURE	100% @ +125 °C				
LOW TEMPERATURE	0.65% AQL@-55°C				

Table 11: Ordering Information									
DEI PART NUMBER	MARKING (1)	PACKAGE	TEMPERATURE RANGE	OUTPUT RESISTOR	OUTPUT FUSE				
DEI1022-G	DEI1022 E4	14 SOIC NB G	-55 / +85 °C	37.5 Ω	NO				
DEI1023-G	DEI1023 E4	14 SOIC NB G	-55 / +85 °C	37.5 Ω	YES				
DEI1024-G	DEI1024 E4	14 SOIC NB G	-55 / +85 °C	0 Ω	NO				
DEI1025-G	DEI1025 E4	14 SOIC NB G	-55 / +85 °C	0 Ω	YES				

Notes:

1. All packages marked with Lot Code and Date Code. "E4" after Date Code denotes Pb Free category.

DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or guarantee regarding suitability of its products for any particular purpose.