DEVICE ENGINEERING INCORPORATED

385 East Alamo Drive Chandler, AZ 85225 Phone: (480) 303-0822 Fax: (480) 303-0824 E-mail: admin@deiaz.com

DEI1032 ARINC 429 Line Driver Integrated Circuit

Features:

- ARINC 429 Line Driver for high speed (100KHz) and low speed (12.5KHz) data rates.
- Low EMI RS-422 Line Driver mode for data rates up to 100 KHz.
- Adjustable Slew rates via external capacitors.
- Inputs TTL and CMOS Compatible.
- Low Quiescent Power of 125mW (typical)
- $\bullet \quad \text{Programmable output differential range via V_{REF} pin. } \\$
- Outputs have no internal source resistor and fuse.
- Drives full ARINC load of 400Ω and 0.03μ F.
- -55°C to +85°C operating temperature range.
- 100% Final testing.

Functional Description:

The ARINC 429 Line Driver Circuit is a bipolar monolithic IC designed to meet the requirements of several general aviation serial data bus standards. These include the differential bipolar RZ types such as ARINC 429, ARINC 571, and ARINC 575 as well as the differential NRZ types such as RS-422.

The DEI1032 operates in either ARINC 429 mode or RS-422 mode as Controlled by the 429/422' pin. In 429 mode, the serial data is presented on DATA(A) and DATA(B) inputs in the dual rail format of the DEI1016. The driver is enabled by the SYNC and CLOCK inputs. The output voltage level is programmed by the V_{REF} input and is normally tied to +5VDC along with V_1 to produce output levels of +5 volts, 0 volts, and -5 volts on each output for ± 10 volts differential outputs.

In 422 mode, the serial data is presented on DATA(A) input. The driver is Enabled by the SYNC and CLOCK inputs. The outputs swing between 0 volts and +5 volts if V_{REF} is at +5VDC. See Table 2 – DEI1032 Truth Table for description of input and output logic states.

The DEI1032 A_{OUT} and B_{OUT} outputs have 0Ω of series resistance and require external series resistors which are typically used to implement a transient voltage protection network. The outputs are not fused. The output slew rate is controlled by external timing capacitors on C_A and C_B . Typical values are 75pF for 100KHz data and 500pF for 12.5KHz data.

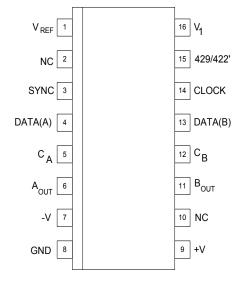


Figure 1: DEI1032 Pinout

	Table 1: DEI1032 Pin Description					
Pin#	Pin Name	Description				
1	V_{REF}	Analog Input. The voltage on V_{REF} sets the output voltage levels on A_{OUT} and B_{OUT} . The output logic levels swing between $+V_{REF}$, 0 volts, and $-V_{REF}$ volts.				
3	SYNC	Logic input. Logic 0 forces outputs to NULL state. Logic 1 enables data transmission.				
14	CLOCK	Logic input. Logic 0 forces outputs to NULL state. Logic 1 enables data transmission.				
4 13	DATA(A) DATA(B)	Logic inputs. These signals contain the Serial Data to be transmitted on the ARINC 429 data bus. Refer to Figure 3.				
5 12	C _A C _B	Analog Nodes. External timing capacitors are tied from these points to ground to establish the output signal slew rate. Typical $C_A = C_B = 75 pF$ for 100 kHz data and $C_A = C_B = 500 pF$ for 12.5 kHz data. *				
6 11	$\begin{array}{c} A_{OUT} \\ B_{OUT} \end{array}$	Outputs. These are the line driver outputs which are connected to the aircraft serial data bus.				
7	-V	Negative Supply Input. –15VDC nominal.				
8	GND	Ground.				
9	+V	Positive Supply Input. +15VDC nominal.				
15	429/422'	Logic Input. Mode control for ARINC 429 and RS-422 modes. An internal $10K\Omega$ pull up resistor keeps the chip in ARINC 429 mode when there is no external connection. This creates a default logic 1, enabling the ARINC 429 mode. A forced logic 0 enables the RS-422 mode.				
16	V_1	Logic Supply Input. +5VDC nominal.				
2,10	NC	No Connect				

^{*}C_A and C_B pin voltages swing between ±5 volts. Any electronic switching of the capacitor on the pins must not inhibit the full voltage swings.

	Table 2: Logic Function								
	429/422 '	SYNC (2)	CLOCK (2)	DATA(A) (2)	DATA(B)	$\mathbf{A}_{\mathrm{OUT}}$	B _{OUT}	COMMENTS	
4	Н	L	X	X	X	0	0	NULL	
2	Н	X	L	X	X	0	0	NULL	
9 M	Н	Н	Н	L	L	0	0	NULL	
O	Н	Н	Н	Н	Н	0	0	NULL	
D E	Н	Н	Н	Н	L	$+V_{REF}$	$-V_{ m REF}$	LOGIC 1	
E	Н	Н	Н	L	Н	$-V_{ m REF}$	$+V_{REF}$	LOGIC 0	
4	L	L	X	X	X	+V _{REF}	0	NULL	
2 2 M	L	X	L	X	X	$+V_{REF}$	0	NULL	
O D E	L	Н	Н	L	X	0	$+V_{REF}$	LOGIC 0	
E	L	Н	Н	Н	X	$+V_{REF}$	0	LOGIC 1	

NOTES:

- 1. The $429/422^{\dagger}$ pin is internally pulled up to V_1 through a $10k\Omega$ resistor. If no external connection is made to this pin, it will default to the 429 mode.
- 2. X = Don't care.

Electrical Description:

Table 3: Maximum Ratings					
PARAMETER	MIN	MAX	UNITS		
VOLTAGE BETWEEN PINS:					
V+ and GND	0	+20.0	V		
V– and GND	0	-20.0	V		
V ₁ and GND	-0.3	+7.0	V		
V _{REF} and GND	-0.3	+6.0	V		
LOGIC INPUTS and GND	-0.3	$(V_1 + 0.3)$	V		
Storage Temperature	-65	+150	° C		
Peak Body Temperature, - G Package		260	°C		
Output Short Circuit Duration		See Note 1			
Output Over Voltage Protection		See Note 2			
Power Dissipation		See Table 5 below			

NOTES:

- One output at a time can be shorted to ground indefinitely.
 The outputs are not fused. External fusing must be provided to meet the Transmitter Fault Isolation of the ARINC 429 SPECIFICATION.

Table 4: Recommended Operating Range							
PARAMETER	MIN	TYP	MAX	UNITS			
+V	+11.4		+16.5	VDC			
-V	-11.4		-16.5	VDC			
V_1	+4.5	+5.0	+5.5	VDC			
V _{REF} (for ARINC 429)	+4.5	+5.0	+5.5	VDC			
V _{REF} (for other applications)	+3.0		+6.0	V			
Operating Temperature (T _A)	-55		+85	° C			
Max Junction Temperature (T _{J MAX1}) Die Limit (short term operation)			+175	°C			
Max Junction Temperature (T _{J MAX2}) Plastic Package Limit (prolonged operation)			+145	°C			

Table 5: DEI1032 Power Dissipation Table							
100% Duty Cycle Full Load = 400Ω/30,000pF Half Load = 4,000Ω/10,000pF							
DATA RATE	LOAD	+V = 15V	-V = -15V	V _{1,} V _{REF} = 5V	Pd POWER	LOAD POWER	
0 to 100kbps	NONE	2.0mA	-5.0mA	4mA	125mW	0.0mW	
12.5kbps	FULL	16.0mA	19.0mA	4mA	485mW	60.0mW	
100kbps	FULL	48.0mA	51.0mA	4mA	1194mW*	325.0mW	
12.5kbps	HALF	6.0mA	8.0mW	4mA	196mW	30.0mW	
100kbps	HALF	22.0mA	25.0mA	4mA	561mW	162.5mW	
*May require heat sink at T _A = +85°C							

Table 6: DC Electrical Characteristics

Conditions: Temperature = -55° C to $+85^{\circ}$ C; +V = +11.4VDC to +16.5VDC, -V = -11.4VDC to -16.5VDC;

 $V_1 = V_{REF} = +5VDC \pm 5\%$, 429/422 = Open Circuit (unless otherwise noted.)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
IQ+V	Quiescent +V supply current	-	2	-	mA	No Load. 429 mode. DATA = CLOCK = SYNC = LOW
IQ-V	Quiescent -V supply current	-	5	-	mA	No Load. 429 mode. DATA = CLOCK = SYNC = LOW
IQV ₁	Quiescent V ₁ supply current	-	4	-	mA	No Load. 429 mode. DATA = CLOCK = SYNC = LOW
IQV_REF	Quiescent V _{REF} supply current	-	10	-	μΑ	No Load. 429 mode. DATA = CLOCK = SYNC = LOW
V_{IH}	Logic 1 In. V	2.0	-	-	V	No Load.
V _{IL}	Logic 0 In. V	-	-	0.6	V	No Load.
I _{IH}	Logic 1 In. I	-	-	10	μА	No Load.
I _{IL}	Logic 0 In. I	-	-	-20	μΑ	No Load. (Pin 15 I _{IL} = -2mA max)
I _{OHSC}	Output Short Circuit Current (Output High)	-80	-	-	mA	Short to Ground
l _{OLSC}	Output Short Circuit Current (Output Low)	80	-	-	mA	Short to Ground
V _{OH}	Output Voltage HIGH. (+1)	V _{REF} - 250mV	V_{REF}	V _{REF} + 250mV	V	No Load. 429 Mode.
V_{NULL}	Output Voltage NULL. (0)	-250	-	+250	mV	No Load. 429 Mode.
V_{OL}	Output Voltage LOW. (-1)	-V _{REF} – 250mV	-V _{REF}	-V _{REF} + 250mV	٧	No Load. 429 Mode.
I _{ст} + -	Timing Capacitor Charge Current C _A (+1) C _B (-1) C _A (-1) C _B (+1)	-	+200 -200	-	μ Α μ Α	No Load. 429 Mode. SYNC = CLOCK = HIGH C_A and C_B held at zero volts.
ISC (+V)	+V Short Circuit Supply Current	-	-	+150	mA	Output short to ground
ISC (-V)	-V Short Circuit Supply Current	-	-	-150	mA	Output short to ground
R _{OUT}	Resistance on each output	-	0	-	Ohms	Room Temp Only
C _{IN}	Input Capacitor	-	-	15	pF	-

AC Characteristics:

Figures 2 and 3 show the output waveforms for the ARINC 429 and RS-422 modes of operation.

The output slew rates are controlled by timing capacitors C_A and C_B . They are charged by $\pm 200 \mu A$ (nom.). Slew rate (SR) measured as V/ μ sec, is calculated by:

SR = 200/C where C is in pF.

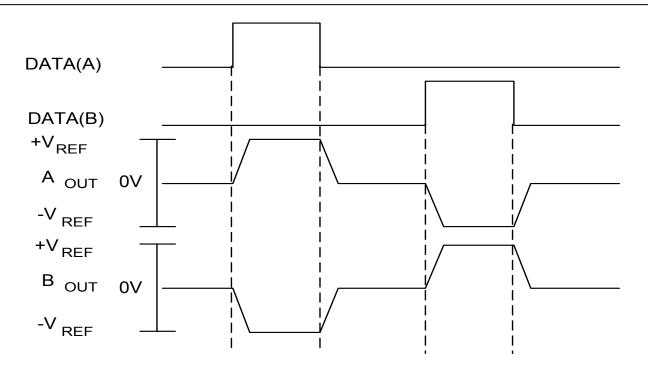


Figure 2: ARINC 429 Waveforms

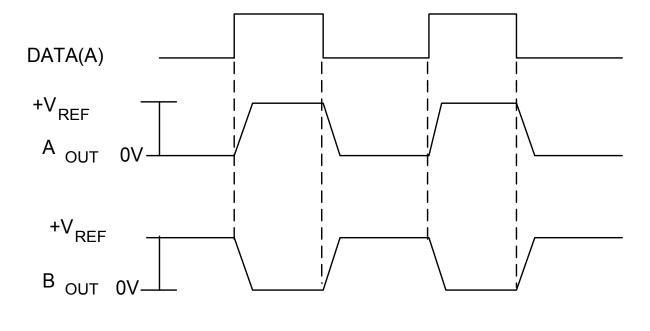


Figure 3: RS-422 Waveforms

5 of 8

	Table 7: DEI1032 AC Electrical Characteristics							
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES			
Output Rise Time $A_{OUT} \text{ or } B_{OUT}$ $C_A = C_B = 75 \text{pF}$ $C_A = C_B = 500 \text{pF}$	t _R	1.0 5.0	2.0 15.0	μsec μsec	5V 90% 0V 10% t _R			
Output Fall Time A_{OUT} or B_{OUT} $C_A = C_B = 75pF$ $C_A = C_B = 500pF$	$t_{ m F}$	1.0 5.0	2.0 15.0	μsec μsec	0V 90% 10% 10%			
Input to Output Propagation Delay	$t_{ m PNH} \ t_{ m PNL}$	-	3.0	μsec	See Figure 4 below			
A _{OUT} / B _{OUT} Skew Spec.	-	1	500	nsec				

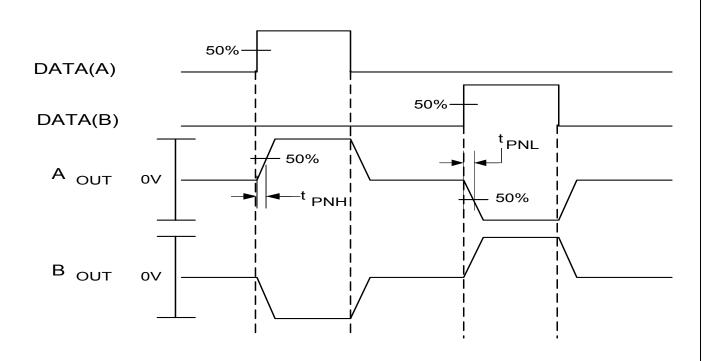


Figure 4: Propagation Delay

Component Screening:

Table 8: Screening Process				
SCREENING	STANDARD PLASTIC			
ELECTRICAL TEST:				
ROOM TEMPERATURE	100%			
HIGH TEMPERATURE	100% @ +125 °C			
LOW TEMPERATURE	0.65% AQL@-55°C			

Ordering Information:

Table 9: Ordering Information						
DEI PART TEMPERATURE NUMBER MARKING (1) PACKAGE RANGE SCREENING						
DEI1032-G	DEI1032 E4	16 NB SOIC G	-55 / +85 °C	STANDARD		

DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or guarantee regarding suitability of its products for any particular purpose.

Package Description:

Table 10: Package Characteristics						
PACKAGE TYPE	16 Lead SOIC Narrow Body, Green					
REFERENCE	16L NB SOIC G					
THERMAL RESISTANCE: $\theta_{JA} \ (\text{4 layer PCB with Power Planes}) \\ \theta_{JC}$	55 °C/W 24 °C/W					
JEDEC MOISTURE SENSITIVITY LEVEL (MSL)	MSL 1 / 260°C					
LEAD FINISH MATERIAL / JEDEC Pb-free CODE	NiPdAu e4					
Pb-Free DESIGNATION	RoHS Compliant					
JEDEC REFERENCE	MS-012-AC					

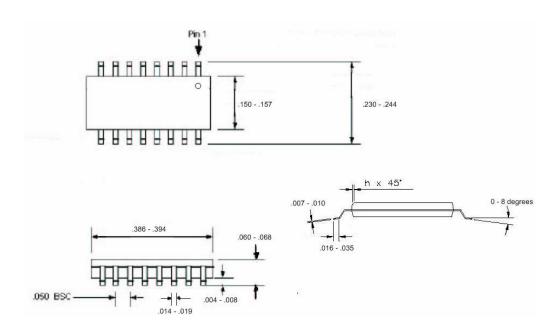


Figure 5: Mechanical Outline - 16L NB SOIC -G Package