Device Engineering Incorporated

6031 South Maple Ave Tempe, AZ 85283 Phone: (480) 303-0822 Fax: (480) 303-0824 E-mail: admin@deiaz.com

FEATURES

- Octal ARINC 429 to TTL/CMOS logic line receivers
- Drop-in replacement for DEI1046-T_S-G and HI-8456PS_
- Operates from single +5 V \pm 10% or 3.3 V \pm 10% power supply
- ARINC inputs internally protected to lightning requirements of DO-160 Level 3 pin injection
- ARINC inputs withstand inadvertent short to 115 Vac on inputs
- Operates in high noise environment
 - o Input Common Voltage Range: ± 20 V
 - o 2 V minimum Input hysteresis
 - High input resistance allows use of external series resistors to support:
 - o Lightning protection beyond Level 3
 - o Fault isolation
- Package: 38L TSSOP, 4.4 mm body

DEI1046A PINOUT

	ĺ				
IN1A	1	0		38	OUT1A
IN1B					OUT1B
IN2A					OUT2A
IN2B				35	OUT2B
IN3A	5				OUT3A
IN3B					OUT3B
IN4A					OUT4A
IN4B					OUT4B
IN5A				30	VSS
IN5B	10		DEI1046A		VDD
IN6A					VSS
IN6B					OUT5A
IN7A					OUT5B
IN7B				25	OUT6A
IN8A	15				OUT6B
IN8B					OUT7A
NC					OUT7B
TESTA					OUT8A
TESTB	19			20	OUT8B

Table 1 DEI1046A Pin Description

DEI1046A

OCTAL ARINC 429 LINE

RECEIVER

PIN	NAME	DESCRIPTION
15, 13, 11, 9, 7, 5, 3, 1	IN[8:1]A	429 INPUTS. ARINC 429 format serial digital data "A" inputs.
16, 14, 12, 10, 8, 6, 4, 2	IN[8:1]B	429 INPUTS. ARINC 429 format serial digital data "B" inputs.
17	NC	Reserved pin for DEI use only.
18	TESTA	LOGIC INPUT, Test input A
19	TESTB	LOGIC INPUT, Test input B
21, 23, 25, 27, 32, 34, 36, 38	OUT[8:1]A	LOGIC OUTPUTS. CMOS/TTL format serial digital data "A" outputs.
20, 22, 24, 26, 31, 33, 35, 37	OUT[8:1]B	LOGIC OUTPUTS. CMOS/TTL format serial digital data "B" outputs.
29	VDD	POWER INPUT. 5 V or 3.3 V.
28, 30	VSS	POWER INPUT. Ground.

FUNCTIONAL DESCRIPTION

The DEI1046A is a BiCMOS device which contains eight differential line receivers. Each receiver channel translates incoming ARINC 429 data bus signals (tri-level RZ bipolar differential modulation) to a pair of TTL/CMOS logic outputs. Each channel operates independently and meets the requirements of the ARINC 429 Digital Information Transfer Standard. Refer to Figure 1 DEI1046A Block Diagram and Truth Table.

The device is designed to operate in a high noise environment. Inputs are accepted over a +/- 20 V common mode voltage range and the receivers provide over 2 V of hysteresis. Circuit speed is optimized to reject high frequency transients.

The DEI1046A device provides logic level TEST inputs for built in system test. They force the outputs of all eight receivers to the specified ZERO, ONE or NULL state. The ARINC inputs are ignored when the device is in test mode. The DEI1046A has a single test port which controls all 8 channels.

The ARINC input pins are designed with internal protection from damage due to lighting induced transients of DO-160 Level 3 pin injection. The protection incorporates on-chip high value resistors to minimize IR heating and highvoltage dielectric isolation to withstand the voltage transients.

Higher protection levels can be achieved with the addition of external TVS devices between the inputs and ground, or alternately, TVS devices in combination with series current limiting resistors between the ARINC bus and the IC/TVS node. The series resistors reduce the power requirement and size of the TVS. Resistor values up to $10 \text{ k}\Omega$ are feasible. See the DEI1049 datasheet for the pin compatible derivative of the DEI1046A which operates with 40 k Ω external resistors.

The ARINC inputs withstand inadvertent short to 115 Vac aircraft power without sustaining damage.

	INPUT	ſS	OUTPUTS		
TEST IN	NPUTS	ARINC			
(TTL/C	MOS)	INPUTS	TTL/CIVIUS		103
TESTA	TESTB	INA - INB	OUTA	OUTB	Logic
0	0	Logic +1	1	0	ONE
0	0	Logic -1	0	1	ZERO
0	0	NULL	0	0	NULL
0	1	Х	0	1	ZERO
1	0	Х	1	0	ONE
1	1	Х	0	0	NULL

Figure 1 DEI1046A Block Diagram and Truth Table

ELECTRICAL DESCRIPTION

PARAMETER	MIN	MAX	UNIT
Supply Voltage (with respect to VSS)	-0.3	7.0	V
Storage Temperature	-65	+150	°C
Input Voltage, continuous (ARINC Inputs)		115	Vac
Power Dissipation @ 85 °C		800	mW
Junction Temperature, Tjmax (limited by molding compound Tg)		145	°C
Peak Body Temperature		260	°C
Lightning Protection (ARINC 429 Channel Inputs) Waveform 3 (2) Waveform 4, 5A (2) (3)	-630 -360	+630 +360	V V
ESD JS-001-2017 HBM	11	3	Class

Table 2: Absolute Maximum Rating

Notes:

1. Stresses above these limits can cause permanent damage.

- 2. Per DO160, Sect 22 Level 3 pin injection. See Figures 4, 5 and 6.
- Inputs can be protected to withstand higher stress by adding series resistors and shunt TVS on inputs. Inputs withstand 1500 V Waveform 5A when clipped ≤ 600 V.

PARAMETER	SYMBOL	CONDITIONS
Supply Voltage	VDD	+5 V ±10% +3.3 V ±10%
Logic Input Levels	TESTA,B	0 to VDD
Operating Temperature -TES -TMS	Та	-55 to +85 °C -55 to +125 °C

Table 3: Recommended Operating Conditions

Conditions: Temperature: -55 °C to +85 °C (-TES); -55 °C to +125 °C (-TMS) VDD = +5 V ±10% or 3.3 V ±10%						
PARAMETER TEST CONDITION		SYMBOL	MIN	MAX	UNIT	
	ARINC INPUTS					
$V_A - V_B = Logic + 1$	OUTA = 1	$V_{\pm 1}$	6.5	13	V	
$V_A - V_B = Logic - 1$	OUTB = 1	V ₋₁	-6.5	-13	V	
$V_A - V_B = Logic Null$	OUTA = 0 OUTB = 0	V _{NULL}	-2.5	2.5	V	
Input Hysteresis		V_{HY}	2.0	4.0	V	
Input Common Mode Voltage Range	Logic +1, Null, Logic -1	V_{CM}	-20	+20	V	
Input Resistance IN _A to IN _B	VDD open, Shorted to VSS or +5 V (1)	R _{IN}	280		kΩ	
Input Resistance IN _A or IN _B to V _{SS}	VDD open, Shorted to VSS or +5 V	Rs	140		kΩ	
Input Capacitance IN _A to IN _B	VDD open, Shorted to VSS or +5 V (1)	C _{IN}		10	pF	
Input Capacitance IN _A or IN _B to V _{SS}	VDD open, Shorted to VSS or +5 V (1)	Cs		10	pF	
LOGIC INPUTS						
Logic 0 Voltage		VIL		0.8	V	
Logic 1 Voltage		V _{IH}	2.0		V	
Logic 0 Current	$V_{IL}=0.8$	IIL		25	μA	
Logic 1 Current	V _{IH} = 2.0	III		50	μA	
LOGIC OUTPUTS						
OUTPUT HIGH VOLTAGE TTL	$I_{OH} = -5 \text{ mA (VDD} = 5.0 \text{ V)}$ $I_{OH} = -5 \text{ mA (VDD} = 3.3 \text{ V)}$ $TTL \text{ Compatible}$	V _{OH}	2.4		V	
OUTPUT LOW VOLTAGE TTL	I _{OL} = 5 mA (VDD = 5.0 V)	V _{OL}		0.4	V	
OUTPUT HIGH VOLTAGE CMOS	I _{OH} = 100 μA CMOS Compatible	V _{OH}	VDD 05		V	
OUTPUT LOW VOLTAGE CMOS	I _{OL} = 100 µA CMOS Compatible	V _{OL}		.05	V	
	SUPPLY CURREN	NT		1		
VDD Current	Data Rate = 0MHz, INA/B = open, OUTA/B = open, VDD = 5.5V or 3.63V	I _{DD}	1.5	8.5	mA	
Notes: 1. Guaranteed by design, not production tested. 2. Current flowing into device is positive. Current flowing out of device is negative. All						

Table 4: Electrical Characteristics

voltages are with respect to VSS unless otherwise noted.

PARAMETER	TEST CONDITION (1,2)	SYMBOL	MAX VDD 3.3 V	MAX VDD 5 V	UNIT	
INA/B to OUTA/B Prop Delay	TESTA = TESTB = 0 $C_L = 50 \text{ pF}$	t _{LH}	1000	900	ns	
INA/B to OUTA/B Prop Delay	$TESTA = TESTB = 0$ $C_{L} = 50 \text{ pF}$	t _{HL}	1000	900	ns	
OUTA/B rise time	10% to 90%, C _L = 50 pF	tr	50	25	ns	
OUTA/B fall time	10% to 90%, C _L = 50 pF	t _f	50	25	ns	
TESTA/B to OUTA/B Prop delay	$C_L = 50 \text{ pF}$	t _{тон}	100	60	ns	
TESTA/B to OUTA/B Prop delay	$C_L = 50 \text{ pF}$	t _{TOL}	100	60	ns	
Notes:						

Table 5: Switching Characteristics

Sample tested.
 Refer to Figures 2 – 3.

ORDERING INFORMATION

DEI PN	Marking (1)	TEST INPUTS	TEMPERATURE RANGE	PACKAGE	SCREENING	
DEI1046A-TES-G	DEI1046A-TES (e4)	YES	-55/+85 ℃	38L TSSOP G	Standard	
DEI1046A-TMS-G	DEI1046A-TMS (e4)	YES	-55/+125 °C	38L TSSOP G	Standard	
Notes: 1. All packages marked with Lot Code and Date Code. (e4) after Date Code denotes Pb Free category.						

Table 6: Ordering Information

Table 7: Screening Process

SCREENING	STANDARD
ELECTRICAL TEST:	
ROOM TEMPERATURE	100%
HIGH TEMPERATURE	100% @ 85 °C or 125 °C
LOW TEMPERATURE	0.65% AQL@-55 °C

PACKAGE DESCRIPTION

CHARACTERISTIC	VALUE
REFERENCE	38L TSSOP G
Θ_{JA} (4 layer PCB with Power Planes)	75 °C/W
Θ _{JC}	15 °C/W
JEDEC MOISTURE SENSITIVITY LEVEL (MSL)	MSL 2 / 260 °C
LEAD FINISH MATERIAL / JEDEC Pb-free CODE	NiPdAu e4
Pb-Free DESIGNATION	RoHS Compliant
JEDEC REFERENCE	MO-153-BD-1

DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or guarantee regarding suitability of its products for any particular purpose.